
Tracing Nodejs Applications in a Low Level
Context

Progress Report Meeting

 Hervé KABAMBA

January 14, 2022

 Polytechnique Montréal

Département de Génie Informatique et Génie Logicielle

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Agenda

Introduction

Use cases

Conclusion

Ongoing work

Bibliography

2

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction

 Context

 – Single-threaded environment

 – Uses asynchronous requests

 – Uses an Event Loop

 - Uses a Thread Pool

 The asynchronous nature is managed by the Libuv library

3

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction

 Objectives

– Track the high-level asynchronous requests

– Track the underlying low-level operations

– Reconstruct the request life-cycle

– Obtain a vertical span representation of the asynchronous request

4

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction

 Problem

– NodeJs architecture is very complex

 – It is built-in with many independent components

 – An asynchronous operation vertically spans many layers

 Nodejs Architecture [1]

 5

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction

 Problem 2

– High level latency do not give information on the root cause

– A high latency may results from a blocked event loop

– High latency may result from the threads being busy executing other
tasks

 This results in the propagation of the problem to the other
pending requests, increasing their execution latency

6

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction

 Problem 3

At the origin, the request is high-level

Vertically tracking it in the underlying sub-layers raises 2 problems:

 - Synchronization of trace

 - Context management

7

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction

 Proposed solution

– The synchronization is addressed by implementing a Native Module:

 -Typescript and JavaScript applications are instrumented with the latter

 - The module is called from Nodejs application, and LTTng functions
 are invoked from Nodejs internals

 - Resulting in a synchronized LTTng trace

- The trace context is managed by a new proposed algorithm called the
Bounded Context Tracking Algorithm (BCTA):

 A four-layer event context tracking algorithm that vertically
reconstructs a request sequence (Javascript land, V8, Libuv and Kernel)

8

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction

 System Architecture

Javascript

V8 egine

Libuv

Kernel

LT
T

n
g

Z
ip

k
in

Trace Compass

9

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction

I/O Abstraction model

10

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Use Cases

 Use case 1: Tracing Asynchronous functions

- Load the aync_hooks module from nodejs
- Load the calculate module to instrument your code

const async_hooks = require('async_hooks');

const calculate = require("./build/Release/calculate");

Everything is setup !!!

11

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Use case 1

 Tracking promises

12

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Use case 1

 Function asynchronous execution

13

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Use case 2

 Root cause analysis

–vscode.workspace.fs.readfile and node fs.readFile

- Develop a vscode plugin that reads a file and inject it into Theia

- Compare the two reading latencies:

 vscode.workspace.fs.readfile: arround 300 ms
 Nodejs: arround 1,5 ms

14

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Use case 2

 Nodejs reading operation

 Vscode reading operation

15

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Use case 2

 Problem pinpointing

16

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Use case 3
 Monitoring metrics

17

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Ongoing work
 Completing the critical path analysis model

 Developing views for the critical path analysis

 Defining more monitoring metrics

14

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Thank you

14

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Bibliography

[1] I. Beschastnikh, P. Wang, Y. Brun, M. D. Ernst, Debugging distributed
systems, ACM-Queue (2015).

[2] J. Hoglund, An analysis of a distributed tracing systems effect on
performance. jaeger and opentracing api, UMEA University (2020).

[3] S. Tilkov, S. Vinoski, Node.js: Using javascript to build high-performance
network programs, IEEE INTERNET COMPUTING (2010).

[4] Cloud desktop ide platform.

URL https://kubernetes.io/fr/

[5] Visual studio code.

URL https://code.visualstudio.com/

[6] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosenblum, A. Vahdat,
Exploiting a natural network effect for scalable, fine-grained clock
synchronization, 2018.

2007, pp. 171–180.

18

