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Introduction 
  

 Context

 – Single-threaded environment 

 – Uses asynchronous requests

 – Uses an Event Loop

 - Uses a Thread Pool

 The asynchronous nature is managed by the Libuv library
 

3



POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction 

   Objectives

– Track the high-level asynchronous requests

– Track the underlying low-level operations

– Reconstruct the request life-cycle 

– Obtain a vertical span representation of the asynchronous request
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Introduction 

   Problem

– NodeJs architecture is very complex

 – It is built-in with many independent components

 – An asynchronous operation vertically spans many layers

                             Nodejs Architecture [1]

 5



POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction 

   Problem 2

– High level latency do not give information on the root cause

– A high latency may results from a blocked event loop  

– High latency may result from the threads being busy executing other 
tasks 

 This results in the propagation of the problem to the other 
pending requests, increasing their execution latency
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Introduction

   Problem 3

At the origin, the request is high-level

Vertically tracking it in the underlying sub-layers raises 2 problems:

 - Synchronization of trace

  - Context management 
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Introduction 

   Proposed solution

– The synchronization is addressed by implementing a Native Module:
   
     -Typescript and JavaScript applications are instrumented with the latter
     
     - The module is called from Nodejs application, and LTTng functions 
       are invoked  from Nodejs internals

    - Resulting in a synchronized LTTng trace

- The trace context is managed by a new proposed algorithm called the 
Bounded Context Tracking Algorithm (BCTA):

   A four-layer event context tracking algorithm that vertically 
reconstructs a request sequence (Javascript land, V8, Libuv and Kernel)
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Introduction 

   System Architecture
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Introduction  
  

I/O Abstraction model
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Use Cases 

   Use case 1: Tracing Asynchronous functions  

- Load the aync_hooks module from nodejs
- Load the calculate module to instrument your code

const async_hooks = require('async_hooks');

const calculate = require("./build/Release/calculate");

Everything is setup !!!
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Use case 1 

   Tracking promises
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Use case 1 

   Function asynchronous execution  
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Use case 2 

   Root cause analysis

–vscode.workspace.fs.readfile and node fs.readFile

- Develop a vscode plugin that reads a file and inject it into Theia

- Compare the two reading latencies:

 vscode.workspace.fs.readfile: arround 300 ms
 Nodejs: arround 1,5 ms
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Use case 2 

   Nodejs reading operation

 Vscode reading operation 
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Use case 2

    Problem pinpointing 

16



POLYTECHNIQUE MONTREAL – Hervé Kabamba

Use case 3 
    Monitoring metrics
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Ongoing work 
   Completing the critical path analysis model

   Developing views for  the critical path analysis

   Defining more monitoring metrics
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Thank you
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