
LTTng-UST dynamic tracepoints in uftrace
Progress Report Meeting

Clément Guidi Mohammad Nassiri

DORSAL – Polytechnique Montréal

January 14, 2022

C. Guidi, M. Nassiri (Polytechnique Montréal) LTTng-UST dynamic tracepoints in uftrace January 14, 2022 1 / 17

Table of contents
1 Introduction
2 Previous achievements

Main contributions
Side improvements

3 LTTng-UST tracepoints
Tracepoint definition
Using uftrace features
Visualization
Difficulties encountered
Demo

4 Work in progress and future research
Work in progress
Future work

5 Conclusion
C. Guidi, M. Nassiri (Polytechnique Montréal) LTTng-UST dynamic tracepoints in uftrace January 14, 2022 2 / 17

Introduction

About uftrace:
function tracing tool for C/C++/Rust applications
can instrument userspace
empowering features, including

plain and regex filters for function/library names
execution duration and call depth filters
argument and return value logging

Upstream limitations:
binary instrumentation performed before execution
custom trace format

C. Guidi, M. Nassiri (Polytechnique Montréal) LTTng-UST dynamic tracepoints in uftrace January 14, 2022 3 / 17

Previous achievements
Main contributions

Previous work at DORSAL includes:
indirect jump resolution: improve patching success rate by identifying indirect jump
locations (external library) [Gabriel Pollo-Guilbert]
x86 runtime patching and unpatching: instrument binaries during execution using a
locking mechanism and out of line execution; remove tracepoints [Christian
Harper-Cyr, Anas Balboul, Ahmad Shahnejat and Gabriel Pollo-Guilbert]
client command: send commands to a libmcount daemon running inside a uftrace target
[Clément Guidi]

C. Guidi, M. Nassiri (Polytechnique Montréal) LTTng-UST dynamic tracepoints in uftrace January 14, 2022 4 / 17

Previous achievements
Side improvements

Smaller improvements have been made:
read external symbol file for stripped binaries – using --with-syms=DIR option
detailed patching statistics
unpatch option enhancement, for the new unpatching capabilities
bug fixes

Intel CET ENDBRANCH instruction was sometimes omitted
cache serialization: membarrier MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE
command unavailable on older kernels; use CPUID interrupt instead

C. Guidi, M. Nassiri (Polytechnique Montréal) LTTng-UST dynamic tracepoints in uftrace January 14, 2022 5 / 17

Previous achievements
Side improvements

Example of detailed statistics in debug mode when instrumenting python3.11.

dynamic: dynamic patch stats for ’python3.11’
dynamic: total: 1479
dynamic: patched: 602 (40.70%)
dynamic: failed: 853 (57.67%)
dynamic: no detail: 0 (0.00%)
dynamic: relative jump: 64 (72.72%)
dynamic: relative call: 0 (0.00%)
dynamic: PIC: 24 (27.27%)
dynamic: skipped: 24 (1.62%)
dynamic: no match: 0

C. Guidi, M. Nassiri (Polytechnique Montréal) LTTng-UST dynamic tracepoints in uftrace January 14, 2022 6 / 17

LTTng-UST tracepoints

uftrace makes use of:
custom trace format – serialized timestamped events
custom event buffering mechanism

Objective Leverage uftrace capabilities to produce LTTng CTF traces
filters
dynamic patching
argument and return value logging

Solution Emitting LTTng events in regular libmcount probe entries.

C. Guidi, M. Nassiri (Polytechnique Montréal) LTTng-UST dynamic tracepoints in uftrace January 14, 2022 7 / 17

LTTng-UST tracepoints
Tracepoint definition

define TRACEPOINT_PROVIDER lttng_ust_cyg_profile

include <lttng/ tracepoint .h>

TRACEPOINT_EVENT_CLASS (
lttng_ust_cyg_profile ,
func_class ,
TP_ARGS (

void *, func_addr ,
void *, call_site ,
char *, arg_ret_str),

TP_FIELDS (
ctf_integer_hex (unsigned long , addr , (unsigned long) func_addr)
ctf_integer_hex (unsigned long , call_site , (unsigned long) call_site)
ctf_string (arg_ret_str , arg_ret_str)

)
)

C. Guidi, M. Nassiri (Polytechnique Montréal) LTTng-UST dynamic tracepoints in uftrace January 14, 2022 8 / 17

LTTng-UST tracepoints
Tracepoint definition

TRACEPOINT_EVENT_INSTANCE (
lttng_ust_cyg_profile ,
func_class ,
func_entry ,
TP_ARGS (void *, func_addr ,

void *, call_site ,
char *, arg_ret_str)

)

TRACEPOINT_EVENT_INSTANCE (
lttng_ust_cyg_profile ,
func_class ,
func_exit ,
TP_ARGS (void *, func_addr ,

void *, call_site ,
char *, arg_ret_str)

)

C. Guidi, M. Nassiri (Polytechnique Montréal) LTTng-UST dynamic tracepoints in uftrace January 14, 2022 9 / 17

LTTng-UST tracepoints
Using uftrace features

Function/library filter: works normally, handled by libmcount at function entry
Call depth filter: works normally, handled by libmcount at function entry
Time filter: not functional, handled at function exit. Entry event still emitted
Argument and return value: functional, available in arg_ret_str event field

C. Guidi, M. Nassiri (Polytechnique Montréal) LTTng-UST dynamic tracepoints in uftrace January 14, 2022 10 / 17

LTTng-UST tracepoints
Visualization

C. Guidi, M. Nassiri (Polytechnique Montréal) LTTng-UST dynamic tracepoints in uftrace January 14, 2022 11 / 17

LTTng-UST tracepoints
Difficulties encountered

Preserving registers: mcount saves the registers it alters before executing the probe.
LTTng tracepoints are using previously untouched vector registers ymm0 and ymm1.
mcount needs to save/restore them.
Time filter: the time filter mechanism is incompatible with LTTng, as function entry
events would need to be sent conditionally at the end of the function. This alters the
timestamp.

Hints: only log exit event with the duration, keeping a stack of conditional events
Upstream refactoring: conflicting refactoring was applied upstream.

C. Guidi, M. Nassiri (Polytechnique Montréal) LTTng-UST dynamic tracepoints in uftrace January 14, 2022 12 / 17

LTTng-UST tracepoints
Demo

How to use uftrace with LTTng:
1 LTTng session: add vpid, vtid and procname userspace context

lttng create my-session
lttng enable-event -u -a # all userspace events
lttng add-context -u -t vpid -t vtid -t procname
lttng start

2 uftrace: instruct uftrace to use libmcount-lttng.so library using --libmcount-lttng
option

3 instrumentation: instrumenting the target is not mandatory, it can be done at runtime.
Use --dynamic to initialize the relevant mechanism

4 runtime: send patching/unpatching instruction with the client, using regular --patch/-P
and --unpatch/-U options

C. Guidi, M. Nassiri (Polytechnique Montréal) LTTng-UST dynamic tracepoints in uftrace January 14, 2022 13 / 17

LTTng-UST tracepoints
Demo

C. Guidi, M. Nassiri (Polytechnique Montréal) LTTng-UST dynamic tracepoints in uftrace January 14, 2022 14 / 17

Work in progress and future research
Work in progress

Evaluating the performance of dynamic binary instrumentation according to the following
criteria:

patching success rate: the percentage of locations that are successfully instrumented
patching perturbation: the time needed to instrument functions or remove
instrumentation, and global slowdown caused to the target
probe overhead: slowdown caused by the execution of probes
memory consumption

We will evaluate performance on a list of around 30 applications with the following
characteristics:

C, C++ or Rust language
low or high function count
small or big binary size
single- or multi-threaded

C. Guidi, M. Nassiri (Polytechnique Montréal) LTTng-UST dynamic tracepoints in uftrace January 14, 2022 15 / 17

Work in progress and future research
Future work

Next project steps:
improve instrumentation methods to increase patching success rate and efficiency

use 2-byte relative jumps with intermediate trampolines
use instruction punning

support ARM platforms
validate the robustness
attach on the fly to running process

a PR exists on GitHub but is on hold
apply methods to other tools: Kprobes, GDB
support adaptative tracing: continuously patch and unpatch function based on usage

C. Guidi, M. Nassiri (Polytechnique Montréal) LTTng-UST dynamic tracepoints in uftrace January 14, 2022 16 / 17

Conclusion

Source code repository: https://gitlab.com/dorsal1/uftrace

Questions?

C. Guidi, M. Nassiri (Polytechnique Montréal) LTTng-UST dynamic tracepoints in uftrace January 14, 2022 17 / 17

https://gitlab.com/dorsal1/uftrace

	Introduction
	Previous achievements
	Main contributions
	Side improvements

	LTTng-UST tracepoints
	Tracepoint definition
	Using uftrace features
	Visualization
	Difficulties encountered
	Demo

	Work in progress and future research
	Work in progress
	Future work

	Conclusion

