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The Problem & Motivation

Modern AlOps systems require high-
fidelity kernel traces for:

Scheduling decisions, memory
allocations, I/0 operations (microsecond
precision)

Training diagnostic and trace-driven ML
models

Root cause analysis and MTTR reduction

Three Key Barriers:

* Production overhead: Tracing adds 1.5-
1.6x runtime cost - infeasible for latency-
sensitive services

e Privacy constraints: Traces contain
sensitive file paths, network endpoints >
violate data retention policies

e Long-tail diversity: Real traces miss rare
failure modes valuable for training



Why Existing Approaches Fall Short

Approach
Statistical models (Markov

chains)

Rule-based generators

GANSs (SeqGAN, MaliGAN)

Limitation

Can't capture long-range
dependencies or multi-attribute
correlations

Require substantial domain
expertise; don't generalize across
workloads

Violate chronology and event
coherence even when
syntactically correct

Impact
Locally valid but globally

implausible

Labor-intensive, brittle

Unreliable semantic correctness



Experimental Setu

4 Stages
* Data Preparation

* Generation
* Repair and Constraints

* Downstream Training

Downstream Training
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Data Preprocessing
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Diffusion Model Architecture (DDPM)

Core ldea
* Learn datadistribution by denoising noise > data
* Traintoreverse a gradual Gaussian noising process

Forward (Noising) Process
* Add noise over T'steps

X =+ hg+J1—are,e ~N(O1)

Reverse (Denoising) Process
* Neural network egpredicts noise
€ = €g(xp t)

Recover clean signal

Model Architecture
* Input: noisy sample x; +ttimestep t
* Backbone: U-Net / Transformer
* Timestep embedding conditions the network

Training Objective
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Constraint-based distance metrics. We quantify synthetic trace va-
lidity using four distance metrics. Transition distance measures
invalid event pairs:

Repairing Synthetic Data

. 1 .
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Temporal distance measures timing violations:
. 1 _
Dime(X) = 125 31 | At ¢ [min, max] |

CPU affinity distance measures invalid CPU assignments:
* Generative Model . ' Do) = #lecﬁu ‘il

* Can be semantically incorrect P X| & A
* Fix: Attribute validity distance aggregates categorical violations:

* Invalid transitions

* Temporalviolations

* Attribute inconsistencies

- 1 a
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* 4 Classes of constraints from real shards:
* Event transitions:

Repair & Constraints

* adirected graph G=(I/',E), where (e_i,e_j)EE if e_j follows e_i in real traces \_\l
« Temporal bounds: r@_ Ve i
* min & max inter-event deltas per event type Syhaic
* CPU affinity: (Raw) .
* allowed CPU sets per event type . E—\ NS e )

* Attribute validity:

* Allowed values for tid, comm, and ret conditioned on event type.

Real NPZ
Shards
(train)

Learn constraints
Constraints JSON
(offline)

Synthetic
NPZ Traces
(Repaired)




Downstream Task — Next Event Prediction

Downstream Training

Test Dptaset
(Real Dnly)
! '

-

Independent
training runs

* What We're Testing:
* Task: Next-event prediction (384-way classification)
* Input: Sequence of 128 kernel events

Real Only

—

Metrics

e Goal: Predict what event happens next
* Test Set: Real data only (never seen before)

Next Event
Predictor
(Transformer)

* Model Architecture:
* Transformer encoder (4 layers, 8 heads, d_model=256) S

e Multi-channelinputs: Event type, timing, CPU, thread
ID, command, return values

L . ) ) Config Training Data Purpose
* Training: 20 epochs with early stopping (patience=5)

e Metrics: Real-Only 100% real Baseline performance

* Primary: macro F1 Combined (50/50) 100% synthetic + Can synthetic replace

* Secondary: weighted F1, accuracy, and Top-K accuracy. (Unrepaired) repair real?

Combined (50/50) 50% real + 50% Can augmentation
(Repaired) synthetic help?



RQ1 - When Can Synthetic Traces Safely Augment Real

Data?

Table 2: RQ1: Performance trade-offs when doubling the training dataset size using synthetic data. We compare training on
real data (Real-only) with training on data composed of 50% real and 50% synthetic traces (Combined). AF1 reports the change
in macro-F1 score introduced by synthetic augmentation across workloads and context lengths.

L=256 L=1024 L=4096

Benchmark

Real Combined AFL Feal Combined AF1 Feal Combined AF1
ﬂ'mpeg G999, 32.0% -37.9% B2.9 6. 1% -22 B B1.5% G4 4% -17.1%
inEone 64.0% 19.9% -44 1% 67.7% 34 8% -32.9% 69.3% 40 8% -28.5%
}‘J':.-'l‘re-llch TO.6% 41.8% -28. 8% Bo.a% 69 7% =19 9% BR.6% 783% -10.3%
scimark? T2.0% 40.6% -31.4% B8.5% 68.0% -20.5% B9.8% 87.2% -2.6%
stream G8.5% 17.6% -50.9% T0.5% A0, 7% -20 B G9.7% 44 9% -24 8%
u ﬂ[‘ﬁit]c—ﬁllux 63.4% 27T.8B% -35.6% 62 1% 44 3% -24 8% — 43 8% —
Average 68.1% 30.0% -38.1% 7R.0% 52.9% -25.1% 79.8% 59.9% -17.7%

Table 3: RQ1 (Secondary Metrics): Weighted F1, accuracy, and Top-K accuracy for the Combined (50% real + 50% synthetic)
configuration across workloads and context lengths.

Benchmark L=256 L=1024 L=4096

FI-W  Acc Top-5 Top-10 F1-W  Ace Top-5 Top-10 FI-W  Aec Top-5 Top-10
fimpeg 859% B66%  95.8% 9T74% 919% 921%  9Ba6%w  992% 938®  93.9%  994% 99.0%
inzone B44%  B4ATR 952% BG9R BY.6W 89TR 9EE% 9901% SLZER 94.9%  993%  99.a%
pybench 874%  BTE®R  952% %G6W 942%  943% 986w 992% 960% 96.2% 99.6% 99.8%
scimark? 87.0%  BTA% 95.1%  9e5% 0 938W 938% 98LW 9909 969 97.0%  997% 99.8%
stream 84.0% B45%  98.0%  9R5E BEIW  BB4W 992%  995%  B9B®m  B99W  99.6W  99.8%

unpack-linux  85.3%  B56%  95.1%  968%  90.5%  90.6%  982%  990%  929%  93.0%  99.3% 99.7%

Average 85.7% 86.1% 95.7% 97.1% 914% 915% 985% 992% 93.7% 93.8% 995% 99.7%




RQ2 - Does Constraint-Guided Repair Help?

Table 4: RQ2: Effect of constraint-guided repair across benchmarks and context lengths. We compare Combined (No Repair)
and Combined (Repaired) configurations. AF1 reports the change in macro-F1 score introduced by applying constraint-guided

repair.
L=256 L=1024 L=4096

Benchmark

No Rep. Repaired  AF1 Rel. NoRep. Repaired AF1 Rel. NoRep. Repaired AF1 Rel.
fimpeg 353.2% 32.0% -12% -3.a% 60.2% 60.1% -0.1% -0.2% 65.6% 64.4% -1.2% -1.8%
10Zone 19.5% 19.9% +0.4%  +2.0% 35.0% 3485 -0.2% -0.6% 41.3% 40.8% -0.5% -1.2%
pybench 40.1% 41.8% +Lo%  +4.1% 697 % 6% 7 H +0.0% +0.0% 78.0% T83% +0.3% +0.3%
scimark?2 38.9% 40.6% +1L.7%  +4.3% 67.7% 68 0% +0.3% +0.4% 87.0% B7.2% +0.2% +0.3%
giream 17.2% 17.6% +03%  +1.8% 39.5% 40.7% +1.2% +3.1% 44 2% 44 9% +0.7% + 1. 7%
unpack-linux 27.4% 27.8% +0.4%  +14% 43.9% 44 3% +0.4% +LO% 58.0% 43.8% -14.2%° -24.6%"°
Average 29.4% 3005 +0.3% +1.5% 32.7% 22.9% +0.3% +0.6% 62.4% 39.9% -2.5% -4.2%

*Anomaly in unpack-linux L=40%; isolated outlier likely due to dataset or trace-specific irregularities.



Table 5: RQ3: Effect of diffusion model context length on syn-
thetic data quality. All results use the Combined (Repaired)
configuration. AF1 denotes the absolute macro-F1 change
from L = 256 to L = 4096, and Rel. Gain the corresponding
relative improvement.

RQ3 - How does
Increasing

Benchmark L=256 L=1024 L=4096 AF1(256—4096) Rel. Gain

. . ffmpeg 32.0%  60.1%  64.4% +32.3% +101%
diffusion model i0zone 19.9%  34.8%  40.8% +20.9% +105%
pybench 41.8%  09.7% 78.3% +36.5% +87%

ConteXt length scimark? 40.6% 68.0% 87.2% +46.6% +115%
1 stream 17.6% 40.7% 44 9% +27.4% +156%
Improve unpack-linux  27.8%  44.3% 43.8% +16.0% +57%
Synthetlc data Average 30.0% 52.9% 59.9% +29.9% +104%

guality?




Table 6: RQ4: Cross-model ablation results (macro-F1 %).
Rows correspond to diffusion model feature sets and columns
to downstream predictor features. All results use Combined
(Repaired) with L = 4096. Bold indicates the best configura-
tion per benchmark; italic indicates within 1% of best.

RQ4 w Ablatlon Benchmark Diffusion Model event event+dt event+dt+cpu+tid alle

t d Base (2 ch) 60.6% 61.8% — —

S U y fimpeg System (4 ch) 60.8% 61.7% 60.5% -
Full (6 ch) 60.8% 60.9% 29.7% 58.9%

Base (2 ch) 71.3% 70.6% - -

pybench System (4 ch) 70.3% 70.9% 71.0% -
Full (6 ch) 70.0% 71.2% 71.2% 70.6%

Base (2 ch) 67.9% 68.5% — -

scimark2 System (4 ch) 67.8% 65.5% 67.0% -

Full (6 ch) 67.5% 68.9% 68.8% 69.4%




Discussion and Implications

1
Te

Model Viability

Diffusion models can
generate realistic system
traces without explicit
determinism

Performance degrades
mainly when hidden external
state dominates behavior

v/

Design Implications
Temporal context is the
primary driver of realism

Rich feature engineering
provides diminishing returns

Simpler inputs with longer
context are preferable

Learning & Repair

Models implicitly learn many

system constraints at scale

Explicit repair mechanisms
are most useful under

uncertainty or limited context

System Integration

Suitable for fuzz testing and
robustness evaluation

Enables privacy-preserving
trace sharing

Effective for rare-event
amplification and dataset
balancing



Thank you
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