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The Problem & Motivation

Problems:

• Modern AIOps systems require high-
fidelity kernel traces for:

• Scheduling decisions, memory 
allocations, I/O operations (microsecond 
precision)

• Training diagnostic and trace-driven ML 
models

• Root cause analysis and MTTR reduction

Three Key Barriers:

• Production overhead: Tracing adds 1.5–
1.6× runtime cost → infeasible for latency-
sensitive services

• Privacy constraints: Traces contain 
sensitive file paths, network endpoints → 
violate data retention policies

• Long-tail diversity: Real traces miss rare 
failure modes valuable for training



Why Existing Approaches Fall Short

Approach Limitation Impact

Statistical models (Markov 
chains)

Can't capture long-range 
dependencies or multi-attribute 
correlations

Locally valid but globally 
implausible

Rule-based generators
Require substantial domain 
expertise; don't generalize across 
workloads

Labor-intensive, brittle

GANs (SeqGAN, MaliGAN)
Violate chronology and event 
coherence even when 
syntactically correct

Unreliable semantic correctness



Experimental Setup

4 Stages
• Data Preparation
• Generation
• Repair and Constraints
• Downstream Training



Data Preprocessing

Channel Collection Method ID Assignment Special 
Tokens Vocab Size

event Scan all traces, count 
frequency

Sort by frequency 
(0 → most 
common)

— 384

dt Scan all traces log(1+ Δ𝑡)
— —

comm Extract process names 
from Parquet

Sort by 
frequency, start 
at ID 2

<PAD>=0, 
<UNK>=1 123

ret Extract return values, 
keep Top-K

Assign Top-1024 
IDs from 2

<PAD>=0, 
<UNK>=1 1026

tid Raw thread IDs Hash to buckets: 
tid % 256

— 256 buckets

cpu CPU core IDs Direct encoding 
(0–3) — 4



Diffusion Model Architecture (DDPM)

• Core Idea
• Learn data distribution by denoising noise → data
• Train to reverse a gradual Gaussian noising process

• Forward (Noising) Process
• Add noise over 𝑇steps

𝑥𝑡 = 𝛼𝑡 ℎ0 + 1 − 𝛼𝑡 𝜖, 𝜖 ∼ 𝒩 0 𝐼

• Reverse (Denoising) Process
• Neural network 𝜖𝜃predicts noise

Ƹ𝜖 = 𝜖𝜃 𝑥𝑡 𝑡

• Recover clean signal

ො𝑥0 =
𝑥𝑡 − 1 − 𝛼𝑡 Ƹ𝜖

𝛼𝑡

• Model Architecture
• Input: noisy sample 𝑥𝑡 +timestep 𝑡
• Backbone: U-Net / Transformer
• Timestep embedding conditions the network

• Training Objective
ℒ = 𝔼[∥ 𝜖 − 𝜖𝜃 𝑥𝑡 𝑡 ∥2]

• Sampling
• Start from pure noise 𝑥𝑇 ∼ 𝒩 0 𝐼

• Iteratively denoise 𝑇 → 0



Repairing Synthetic Data

• Generative Model
• Can be semantically incorrect

• Fix:
• Invalid transitions
• Temporal violations
• Attribute inconsistencies

• 4 Classes of constraints from real shards:
• Event transitions:

•  a directed graph G=(𝑉,𝐸), where (𝑒_𝑖,𝑒_𝑗)∈𝐸 if 𝑒_𝑗 follows 𝑒_𝑖 in real traces
• Temporal bounds: 

• min & max inter-event deltas per event type
• CPU affinity: 

• allowed CPU sets per event type
• Attribute validity:

• Allowed values for tid, comm, and ret conditioned on event type.



Downstream Task – Next Event Prediction

• What We're Testing:
• Task: Next-event prediction (384-way classification)
• Input: Sequence of 128 kernel events
• Goal: Predict what event happens next
• Test Set: Real data only (never seen before)

• Model Architecture:
• Transformer encoder (4 layers, 8 heads, d_model=256)
• Multi-channel inputs: Event type, timing, CPU, thread 

ID, command, return values
• Training: 20 epochs with early stopping (patience=5)

• Metrics:
• Primary: macro F1
• Secondary: weighted F1, accuracy, and Top-K accuracy.

Config Training Data Purpose

Real-Only 100% real Baseline performance

Combined (50/50) 
(Unrepaired)

100% synthetic + 
repair

Can synthetic replace 
real?

Combined (50/50)
(Repaired)

50% real + 50% 
synthetic

Can augmentation 
help?



RQ1 - When Can Synthetic Traces Safely Augment Real 
Data?



RQ2 - Does Constraint-Guided Repair Help?



RQ3 - How does 
increasing 
diffusion model 
context length 
improve 
synthetic data 
quality?



RQ4 - Ablation 
study



Discussion and Implications

Model Viability
Diffusion models can 

generate realistic system 
traces without explicit 

determinism

Performance degrades 
mainly when hidden external 

state dominates behavior

Design Implications
Temporal context is the 

primary driver of realism

Rich feature engineering 
provides diminishing returns

Simpler inputs with longer 
context are preferable

Learning & Repair
Models implicitly learn many 
system constraints at scale

Explicit repair mechanisms 
are most useful under 

uncertainty or limited context

System Integration
Suitable for fuzz testing and 

robustness evaluation

Enables privacy-preserving 
trace sharing

Effective for rare-event 
amplification and dataset 

balancing



Thank you
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