
Generating and Validating
Synthetic Kernel Traces Using

Diffusion Models

Yuvraj Sehgal | Sneh Patel | Mahsa Panahandeh | Prof. Naser Ezzati-
Jivan | François Tétreault

The Problem & Motivation

Problems:

• Modern AIOps systems require high-
fidelity kernel traces for:

• Scheduling decisions, memory
allocations, I/O operations (microsecond
precision)

• Training diagnostic and trace-driven ML
models

• Root cause analysis and MTTR reduction

Three Key Barriers:

• Production overhead: Tracing adds 1.5–
1.6× runtime cost → infeasible for latency-
sensitive services

• Privacy constraints: Traces contain
sensitive file paths, network endpoints →
violate data retention policies

• Long-tail diversity: Real traces miss rare
failure modes valuable for training

Why Existing Approaches Fall Short

Approach Limitation Impact

Statistical models (Markov
chains)

Can't capture long-range
dependencies or multi-attribute
correlations

Locally valid but globally
implausible

Rule-based generators
Require substantial domain
expertise; don't generalize across
workloads

Labor-intensive, brittle

GANs (SeqGAN, MaliGAN)
Violate chronology and event
coherence even when
syntactically correct

Unreliable semantic correctness

Experimental Setup

4 Stages
• Data Preparation
• Generation
• Repair and Constraints
• Downstream Training

Data Preprocessing

Channel Collection Method ID Assignment Special
Tokens Vocab Size

event Scan all traces, count
frequency

Sort by frequency
(0 → most
common)

— 384

dt Scan all traces log(1+ Δ𝑡)
— —

comm Extract process names
from Parquet

Sort by
frequency, start
at ID 2

<PAD>=0,
<UNK>=1 123

ret Extract return values,
keep Top-K

Assign Top-1024
IDs from 2

<PAD>=0,
<UNK>=1 1026

tid Raw thread IDs Hash to buckets:
tid % 256

— 256 buckets

cpu CPU core IDs Direct encoding
(0–3) — 4

Diffusion Model Architecture (DDPM)

• Core Idea
• Learn data distribution by denoising noise → data
• Train to reverse a gradual Gaussian noising process

• Forward (Noising) Process
• Add noise over 𝑇steps

𝑥𝑡 = 𝛼𝑡 ℎ0 + 1 − 𝛼𝑡 𝜖, 𝜖 ∼ 𝒩 0 𝐼

• Reverse (Denoising) Process
• Neural network 𝜖𝜃predicts noise

Ƹ𝜖 = 𝜖𝜃 𝑥𝑡 𝑡

• Recover clean signal

ො𝑥0 =
𝑥𝑡 − 1 − 𝛼𝑡 Ƹ𝜖

𝛼𝑡

• Model Architecture
• Input: noisy sample 𝑥𝑡 +timestep 𝑡
• Backbone: U-Net / Transformer
• Timestep embedding conditions the network

• Training Objective
ℒ = 𝔼[∥ 𝜖 − 𝜖𝜃 𝑥𝑡 𝑡 ∥2]

• Sampling
• Start from pure noise 𝑥𝑇 ∼ 𝒩 0 𝐼

• Iteratively denoise 𝑇 → 0

Repairing Synthetic Data

• Generative Model
• Can be semantically incorrect

• Fix:
• Invalid transitions
• Temporal violations
• Attribute inconsistencies

• 4 Classes of constraints from real shards:
• Event transitions:

• a directed graph G=(𝑉,𝐸), where (𝑒_𝑖,𝑒_𝑗)∈𝐸 if 𝑒_𝑗 follows 𝑒_𝑖 in real traces
• Temporal bounds:

• min & max inter-event deltas per event type
• CPU affinity:

• allowed CPU sets per event type
• Attribute validity:

• Allowed values for tid, comm, and ret conditioned on event type.

Downstream Task – Next Event Prediction

• What We're Testing:
• Task: Next-event prediction (384-way classification)
• Input: Sequence of 128 kernel events
• Goal: Predict what event happens next
• Test Set: Real data only (never seen before)

• Model Architecture:
• Transformer encoder (4 layers, 8 heads, d_model=256)
• Multi-channel inputs: Event type, timing, CPU, thread

ID, command, return values
• Training: 20 epochs with early stopping (patience=5)

• Metrics:
• Primary: macro F1
• Secondary: weighted F1, accuracy, and Top-K accuracy.

Config Training Data Purpose

Real-Only 100% real Baseline performance

Combined (50/50)
(Unrepaired)

100% synthetic +
repair

Can synthetic replace
real?

Combined (50/50)
(Repaired)

50% real + 50%
synthetic

Can augmentation
help?

RQ1 - When Can Synthetic Traces Safely Augment Real
Data?

RQ2 - Does Constraint-Guided Repair Help?

RQ3 - How does
increasing
diffusion model
context length
improve
synthetic data
quality?

RQ4 - Ablation
study

Discussion and Implications

Model Viability
Diffusion models can

generate realistic system
traces without explicit

determinism

Performance degrades
mainly when hidden external

state dominates behavior

Design Implications
Temporal context is the

primary driver of realism

Rich feature engineering
provides diminishing returns

Simpler inputs with longer
context are preferable

Learning & Repair
Models implicitly learn many
system constraints at scale

Explicit repair mechanisms
are most useful under

uncertainty or limited context

System Integration
Suitable for fuzz testing and

robustness evaluation

Enables privacy-preserving
trace sharing

Effective for rare-event
amplification and dataset

balancing

Thank you

	Slide 1: Generating and Validating Synthetic Kernel Traces Using Diffusion Models
	Slide 2: The Problem & Motivation
	Slide 3: Why Existing Approaches Fall Short
	Slide 4: Experimental Setup
	Slide 5: Data Preprocessing
	Slide 6: Diffusion Model Architecture (DDPM)
	Slide 7: Repairing Synthetic Data
	Slide 8: Downstream Task – Next Event Prediction
	Slide 9: RQ1 - When Can Synthetic Traces Safely Augment Real Data?
	Slide 10: RQ2 - Does Constraint-Guided Repair Help?
	Slide 11: RQ3 - How does increasing diffusion model context length improve synthetic data quality?
	Slide 12: RQ4 - Ablation study
	Slide 13: Discussion and Implications
	Slide 14: Thank you

