Generating and Validating

Synthetic Kernel Traces Using
Diffusion Models

Yuvraj Sehgal | Sneh Patel | Mahsa Panahandeh | Prof. Naser Ezzati-
Jivan | Francois Tétreault

The Problem & Motivation

Modern AlOps systems require high-
fidelity kernel traces for:

Scheduling decisions, memory
allocations, I/0 operations (microsecond
precision)

Training diagnostic and trace-driven ML
models

Root cause analysis and MTTR reduction

Three Key Barriers:

* Production overhead: Tracing adds 1.5-
1.6x runtime cost - infeasible for latency-
sensitive services

e Privacy constraints: Traces contain
sensitive file paths, network endpoints >
violate data retention policies

e Long-tail diversity: Real traces miss rare
failure modes valuable for training

Why Existing Approaches Fall Short

Approach
Statistical models (Markov

chains)

Rule-based generators

GANSs (SeqGAN, MaliGAN)

Limitation

Can't capture long-range
dependencies or multi-attribute
correlations

Require substantial domain
expertise; don't generalize across
workloads

Violate chronology and event
coherence even when
syntactically correct

Impact
Locally valid but globally

implausible

Labor-intensive, brittle

Unreliable semantic correctness

Experimental Setu

4 Stages
* Data Preparation

* Generation
* Repair and Constraints

* Downstream Training

Downstream Training

Repair & Constraints

" Data Preparation Generator

1 o
Window Shards £ F Independent
_5 </> training runs
i
=
n Detect Ij Test Dataset
Violations Violation (Real Dnly)

Report

Real Only

L=256 / @_
wad _ (DDPM/DDIM

Enriched

S

Parquet Multi-Channel .| Forward | |Transformer . ™ checkpoint Synthetic
(-parquet) i iffusi Denoiser + Sampling
Embedding Diffusion NPZ Traces -
Losses Trained ¢ v
event - dt - cpu - Noise Model (Raw) Metrics
tid - comm - ret Injection .
Checkpoint . Next Event
, (alx.t1x.0) @\ Repair e
Logs “Tokenize Gropal " s — Engine (Transformer)
- Normalize o s Real NPZ Synthetic
‘Hash ;_'.: Shards Learn constraints NPZ Traces
-Pad 1] i : i
g (train) Constraints JSON (Repaired) Synthetic Only
L=4 & (offline)
_ =4096)

Data Preprocessing

. : Special .
Channel Collection Method ID Assignment P Vocab Size
Tokens
Sort by frequenc
Scan all traces, count yireq y _ [Data Preparation
event (0 > most 384
frequency Window Shards
common)
dt Scan all traces log(1+ At) - o
Enriched
Raw Text Parquet
Sortb (.parquet)
Extract process names y <PAD>=0,

A
comm frequency, start 123 <>

< >=
from Parquet 2t 1D 2 UNK>=1 ==
Kernel
. Logs -Tokenize

Extract return values, Assign Top-1024 <PAD>=0, . Normalize _ ©'°Pal
ret _ 1026 Hash Vocabulary

keep Top-K IDs from 2 <UNK>=1 iy

Cl L=4096
tid Raw thread IDs Hash to buckets: 256 buckets
tid % 256

cpu CPU core IDs E)l_rz;:t encoding — 4

Diffusion Model Architecture (DDPM)

Core ldea
* Learn datadistribution by denoising noise > data
* Traintoreverse a gradual Gaussian noising process

Forward (Noising) Process
* Add noise over T'steps

X =+ hg+J1—are,e ~N(O1)

Reverse (Denoising) Process
* Neural network egpredicts noise
€ = €g(xp t)

Recover clean signal

Model Architecture
* Input: noisy sample x; +ttimestep t
* Backbone: U-Net / Transformer
* Timestep embedding conditions the network

Training Objective

L=E[ll e —egxyt) I1%]

Sampling
+ Start from pure noise x; ~ N (0 1)
* Iteratively denoise T — 0

Generator

Window Shards

» Training

? Multi-Channel _,.| Forward

Embedding Diffusion
event - dt-cpu - Noise
tid - comm - ret Injection
(alx_t| x_0))

L=4096

B _,DDPM/DD!M/ é

Transformer i
v q checkpoint . Synthetic
: Samplin
Denoiser + ey NPZ Traces
Losses Trained (Raw)
Model
Checkpoint
3
e
®
3
(1]
®

Constraint-based distance metrics. We quantify synthetic trace va-
lidity using four distance metrics. Transition distance measures
invalid event pairs:

Repairing Synthetic Data

. 1 .
Deaes(8) = 1 = = D (@) € 61

Temporal distance measures timing violations:
. 1 _
Dime(X) = 125 31 | At ¢ [min, max] |

CPU affinity distance measures invalid CPU assignments:
* Generative Model . ' Do) = #lecﬁu ‘il

* Can be semantically incorrect P X| & A
* Fix: Attribute validity distance aggregates categorical violations:

* Invalid transitions

* Temporalviolations

* Attribute inconsistencies

- 1 a
Dt (X) = EZIIHQE&Q:& E(Vé(;J .
1

* 4 Classes of constraints from real shards:
* Event transitions:

Repair & Constraints

* adirected graph G=(I/',E), where (e_i,e_j)EE if e_j follows e_i in real traces _\l
« Temporal bounds: r@_ Ve i
* min & max inter-event deltas per event type Syhaic
* CPU affinity: (Raw) .
* allowed CPU sets per event type . E—\ NS e)

* Attribute validity:

* Allowed values for tid, comm, and ret conditioned on event type.

Real NPZ
Shards
(train)

Learn constraints
Constraints JSON
(offline)

Synthetic
NPZ Traces
(Repaired)

Downstream Task — Next Event Prediction

Downstream Training

Test Dptaset
(Real Dnly)
! '

-

Independent
training runs

* What We're Testing:
* Task: Next-event prediction (384-way classification)
* Input: Sequence of 128 kernel events

Real Only

—

Metrics

e Goal: Predict what event happens next
* Test Set: Real data only (never seen before)

Next Event
Predictor
(Transformer)

* Model Architecture:
* Transformer encoder (4 layers, 8 heads, d_model=256) S

e Multi-channelinputs: Event type, timing, CPU, thread
ID, command, return values

L .)) Config Training Data Purpose
* Training: 20 epochs with early stopping (patience=5)

e Metrics: Real-Only 100% real Baseline performance

* Primary: macro F1 Combined (50/50) 100% synthetic + Can synthetic replace

* Secondary: weighted F1, accuracy, and Top-K accuracy. (Unrepaired) repair real?

Combined (50/50) 50% real + 50% Can augmentation
(Repaired) synthetic help?

RQ1 - When Can Synthetic Traces Safely Augment Real

Data?

Table 2: RQ1: Performance trade-offs when doubling the training dataset size using synthetic data. We compare training on
real data (Real-only) with training on data composed of 50% real and 50% synthetic traces (Combined). AF1 reports the change
in macro-F1 score introduced by synthetic augmentation across workloads and context lengths.

L=256 L=1024 L=4096

Benchmark

Real Combined AFL Feal Combined AF1 Feal Combined AF1
ﬂ'mpeg G999, 32.0% -37.9% B2.9 6. 1% -22 B B1.5% G4 4% -17.1%
inEone 64.0% 19.9% -44 1% 67.7% 34 8% -32.9% 69.3% 40 8% -28.5%
}‘J':.-'l‘re-llch TO.6% 41.8% -28. 8% Bo.a% 69 7% =19 9% BR.6% 783% -10.3%
scimark? T2.0% 40.6% -31.4% B8.5% 68.0% -20.5% B9.8% 87.2% -2.6%
stream G8.5% 17.6% -50.9% T0.5% A0, 7% -20 B G9.7% 44 9% -24 8%
u ﬂ[‘ﬁit]c—ﬁllux 63.4% 27T.8B% -35.6% 62 1% 44 3% -24 8% — 43 8% —
Average 68.1% 30.0% -38.1% 7R.0% 52.9% -25.1% 79.8% 59.9% -17.7%

Table 3: RQ1 (Secondary Metrics): Weighted F1, accuracy, and Top-K accuracy for the Combined (50% real + 50% synthetic)
configuration across workloads and context lengths.

Benchmark L=256 L=1024 L=4096

FI-W Acc Top-5 Top-10 F1-W Ace Top-5 Top-10 FI-W Aec Top-5 Top-10
fimpeg 859% B66% 95.8% 9T74% 919% 921% 9Ba6%w 992% 938® 93.9% 994% 99.0%
inzone B44% B4ATR 952% BG9R BY.6W 89TR 9EE% 9901% SLZER 94.9% 993% 99.a%
pybench 874% BTE®R 952% %G6W 942% 943% 986w 992% 960% 96.2% 99.6% 99.8%
scimark? 87.0% BTA% 95.1% 9e5% 0 938W 938% 98LW 9909 969 97.0% 997% 99.8%
stream 84.0% B45% 98.0% 9R5E BEIW BB4W 992% 995% B9B®m B99W 99.6W 99.8%

unpack-linux 85.3% B56% 95.1% 968% 90.5% 90.6% 982% 990% 929% 93.0% 99.3% 99.7%

Average 85.7% 86.1% 95.7% 97.1% 914% 915% 985% 992% 93.7% 93.8% 995% 99.7%

RQ2 - Does Constraint-Guided Repair Help?

Table 4: RQ2: Effect of constraint-guided repair across benchmarks and context lengths. We compare Combined (No Repair)
and Combined (Repaired) configurations. AF1 reports the change in macro-F1 score introduced by applying constraint-guided

repair.
L=256 L=1024 L=4096

Benchmark

No Rep. Repaired AF1 Rel. NoRep. Repaired AF1 Rel. NoRep. Repaired AF1 Rel.
fimpeg 353.2% 32.0% -12% -3.a% 60.2% 60.1% -0.1% -0.2% 65.6% 64.4% -1.2% -1.8%
10Zone 19.5% 19.9% +0.4% +2.0% 35.0% 3485 -0.2% -0.6% 41.3% 40.8% -0.5% -1.2%
pybench 40.1% 41.8% +Lo% +4.1% 697 % 6% 7 H +0.0% +0.0% 78.0% T83% +0.3% +0.3%
scimark?2 38.9% 40.6% +1L.7% +4.3% 67.7% 68 0% +0.3% +0.4% 87.0% B7.2% +0.2% +0.3%
giream 17.2% 17.6% +03% +1.8% 39.5% 40.7% +1.2% +3.1% 44 2% 44 9% +0.7% + 1. 7%
unpack-linux 27.4% 27.8% +0.4% +14% 43.9% 44 3% +0.4% +LO% 58.0% 43.8% -14.2%° -24.6%"°
Average 29.4% 3005 +0.3% +1.5% 32.7% 22.9% +0.3% +0.6% 62.4% 39.9% -2.5% -4.2%

*Anomaly in unpack-linux L=40%; isolated outlier likely due to dataset or trace-specific irregularities.

Table 5: RQ3: Effect of diffusion model context length on syn-
thetic data quality. All results use the Combined (Repaired)
configuration. AF1 denotes the absolute macro-F1 change
from L = 256 to L = 4096, and Rel. Gain the corresponding
relative improvement.

RQ3 - How does
Increasing

Benchmark L=256 L=1024 L=4096 AF1(256—4096) Rel. Gain

. . ffmpeg 32.0% 60.1% 64.4% +32.3% +101%
diffusion model i0zone 19.9% 34.8% 40.8% +20.9% +105%
pybench 41.8% 09.7% 78.3% +36.5% +87%

ConteXt length scimark? 40.6% 68.0% 87.2% +46.6% +115%
1 stream 17.6% 40.7% 44 9% +27.4% +156%
Improve unpack-linux 27.8% 44.3% 43.8% +16.0% +57%
Synthetlc data Average 30.0% 52.9% 59.9% +29.9% +104%

guality?

Table 6: RQ4: Cross-model ablation results (macro-F1 %).
Rows correspond to diffusion model feature sets and columns
to downstream predictor features. All results use Combined
(Repaired) with L = 4096. Bold indicates the best configura-
tion per benchmark; italic indicates within 1% of best.

RQ4 w Ablatlon Benchmark Diffusion Model event event+dt event+dt+cpu+tid alle

t d Base (2 ch) 60.6% 61.8% — —

S U y fimpeg System (4 ch) 60.8% 61.7% 60.5% -
Full (6 ch) 60.8% 60.9% 29.7% 58.9%

Base (2 ch) 71.3% 70.6% - -

pybench System (4 ch) 70.3% 70.9% 71.0% -
Full (6 ch) 70.0% 71.2% 71.2% 70.6%

Base (2 ch) 67.9% 68.5% — -

scimark2 System (4 ch) 67.8% 65.5% 67.0% -

Full (6 ch) 67.5% 68.9% 68.8% 69.4%

Discussion and Implications

1
Te

Model Viability

Diffusion models can
generate realistic system
traces without explicit
determinism

Performance degrades
mainly when hidden external
state dominates behavior

v/

Design Implications
Temporal context is the
primary driver of realism

Rich feature engineering
provides diminishing returns

Simpler inputs with longer
context are preferable

Learning & Repair

Models implicitly learn many

system constraints at scale

Explicit repair mechanisms
are most useful under

uncertainty or limited context

System Integration

Suitable for fuzz testing and
robustness evaluation

Enables privacy-preserving
trace sharing

Effective for rare-event
amplification and dataset
balancing

Thank you

	Slide 1: Generating and Validating Synthetic Kernel Traces Using Diffusion Models
	Slide 2: The Problem & Motivation
	Slide 3: Why Existing Approaches Fall Short
	Slide 4: Experimental Setup
	Slide 5: Data Preprocessing
	Slide 6: Diffusion Model Architecture (DDPM)
	Slide 7: Repairing Synthetic Data
	Slide 8: Downstream Task – Next Event Prediction
	Slide 9: RQ1 - When Can Synthetic Traces Safely Augment Real Data?
	Slide 10: RQ2 - Does Constraint-Guided Repair Help?
	Slide 11: RQ3 - How does increasing diffusion model context length improve synthetic data quality?
	Slide 12: RQ4 - Ablation study
	Slide 13: Discussion and Implications
	Slide 14: Thank you

