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THE CHALLENGE OF PRODUCTION TRACES

Privacy & Compliance Constraints

Production traces contain sensitive operational details that cannot be shared across teams or organizations due to privacy
regulations and compliance requirements

Storage Cost & Retention Policies

Traces are sampled, truncated, or retained for short periods due to storage costs, limiting the amount of data available for

training and evaluation.

Sampling Bias

Trace repositories are biased toward frequent, benign executions , systematically underrepresenting rare or complex behaviors
critical for robustness testing.

Long-Tail Underrepresentation

Rare or complex behaviors are often the most informative for debugging and reliability engineering, yet they are the hardest to
capture, keep, and share across teams.

Industry context informed by discussions with engineers at Ciena Corporation.



CONTRIBUTIONS

Industry-Driven Need
Articulates the practical constraints observed with engineers at Cieng, including data scarcity, privacy limitations, and insufficient

trace diversity for training learning-based observability tools.

Data Scarcity Privacy Diversity Gap

Hierarchical Framework

Presents a hierarchical, graph-based generative framework that models distributed traces as DAGs and separates global
execution structure from local span-level behavior, with support for both fixed-size and variable-size generation.

Craph VAE Hierarchical DAG Structure

Deployment-Oriented Evaluation
Provides empirical evaluation that goes beyond reconstruction accuracy to assess downstream utility, including train-on-
synthetic-test-on-real performance, hybrid training, and structural similarity analyses.

TSTR Hybrid Training Industrial Guidance



RESEARCH QUESTIONS

Fidelity Preservation Downstream Utility
How accurately do synthetic traces preserve the structural and feature-level To what extent can synthetic traces replace or supplement real trace data in
— properties of real distributed traces? This examines reconstruction accuracy for downstream analysis tasks? This evaluates train-on-synthetic-test-on-real

services, operations, durations, and execution dependencies. performance and hybrid training scenarios.

Reconstruction Structural Fidelity Generalization TSTR
‘ Trace Variability ‘ Similarity & Separability
How does trace variability (fixed-size vs variable-size graphs) affect generation How similar are synthetic and real traces in the joint feature space, and how
fidelity and robustness? This compares uniform structure against heterogeneous easily can they be distinguished? This uses clustering, PCA, and discriminative
execution depths. classification analysis.

Fixed-Size Variable-Size Clustering PCA




TRACE REPRESENTATION & DATASET

Graph Representation

Distributed traces are modeled as directed acyclic graphs (DAGs) where:

Node (V): Spans representing individual operations, each with feature vector x, = (s,: Service ID, o,: Operation ID, d,: Duration)

Edge (E): Parent-child execution relationships capturing causal dependencies

SocialNetwork (SN)
MicroServices: 21 | Traces: 1,244 | Total Spans: 11,649 | Avg Spans/Trace: 9.36

Services: 12 unique | Operations: 59 unique

Broadcast-style social networking application

TrainTicket (TT)
MicroServices: 41 | Traces: 1,244 | Total Spans: 7,912 | Avg Spans/Trace: 6.36

Services: 13 unique | Operations: 16 unique

Online railway ticketing platform
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TRAINING OBJECTIVE & GENERATION

Multi-Component Loss

1. Node Reconstruction (L_node)

Weighted cross-entropy for service/operation + MSE for duration

['/rwde = Lée/r'/mice + ['0;7 + Ldu/r'wb/wn

2. Edge Reconstruction (L_edge)

Binary cross-entropy for parent-child dependency prediction

Lodge = BCE(E, E)

3. KL Regularization (L_KL)

Separate regularization for graph and node latents with 3_G > _N

L1 = fo KL{g(ze | G) | N(0, 1)) +fin Z KL(g(zo | G) IN(0. 1)),

Total Objective:

ol

Liotal = Lnode + ‘Jledgeﬂedge + Lk,

Synthetic Trace Generation

Sampling from Prior

Sample latents from standard Gaussian (no encoder needed):

Decoding Process

Decoder reconstructs node attributes and edges from latent variables

Graph Construction

Edge logits thresholded to form DAG; causal ordering enforced

Generation Modes

Fixed-Size Generation

[V] constant — isolates node attribute quality and dependency reconstruction

Variable-Size Generation

[V] sampled from empirical distribution — evaluates structural coherence across
heterogeneous depths



RQ1: FIDELITY ANALYSIS:
RECONSTRUCTION FIDELITY RESULTS

Service Accuracy Operation Accuracy Edge F1-Score
100% 99.90% 99.91% 99.92% 97.65% 86.10%
SocialNetwork TrainTicket SocialNetwork TrainTicket SocialNetwork TrainTicket
Detailed Performance Metrics (/) Key Findings
Metric SN TT

~2 The encoder ca ptures compact yet expressive representations of both node

attributes and execution dependencies

Total Nodes Evaluated 11,649 7,912
9 . . . o . .
Service Accuracy 100% 99.90% High reconstruction fidelity demonstrates the model preserves information
necessary for structurally valid traces
Operation Accuracy 99.91% 99.92%
~> Edge-level metrics validate the decoder's ability to reconstruct directed
Duration MAE 1,653,559 ms 1,561 ms execution dependencies
Edge Precision 95.40% 78.28%
Edge Recall 100% 95.65%
@ RQ1 Finding
Edge F1-Score 97.65% 86.10%

The hierarchical VAE preserves essential structural and feature-level properties

with high fidelity, providing a reliable foundation for synthetic trace generation.




RQ2: DOWNSTREAM UTILITY:

TRAIN-ON-SYNTHETIC-TEST-ON-REAL RESULTS

Hybrid Training (10% Real) Performance Improvement

99-100% ~25%

Synthetic-Only Training
12-78%

Accuracy on Real Data

Hybrid Training Performance (10% Real + Synthetic)

Metric Fixed-Size
Test Loss 0.0121

Test Accuracy 99.8%

SN Accuracy 99.6%

TT Accuracy 100%

SN Precision/Recall/F1 1.00/0.996/0.998
TT Precision/Recall/F1 0.996/1.00/0.998
False Positives (SN—TT) 4

False Negatives (TT—SN) 0

Evaluated on held-out test sets under distributional shift

Accuracy on Real Data With Minimal Real Data

Variable-Size
0.0136

99.9%

99.7%

100%
1.00/0.997/0.999
0.997/1.00/0.999

3

0

|~ Key Insights

Generalization Under Distribution Shift

Models trained on synthetic data generalize to unseen real traces from different

workloads without retraining

Small Real Data Anchoring Effect

Just 10% real traces combined with synthetic data yields near-perfect classification

performance

Workload-Discriminative Structure

Synthetic traces preserve stable execution patterns rather than dataset-specific

artifacts

@ RQ2 Finding
Synthetic traces can effectively replace real traces for initial model training and

substantially reduce real data requirements, particularly when combined with

limited production traces



RQ3 & RQ4: ROBUSTNESS & SEPARABILITY ANALYSIS:
VARIABILITY & SEPARABILITY ANALYSIS

Fixed-Size vs Variable-Size Comparison

Metric Fixed
Overall Accuracy 82.6%
SN Precision 78.8%
SN Recall 89.3%
SNF1 83.7%
TT Precision 81.4%
TT Recall 84.1%
TT F1 82.5%

Variable
83.4%
86.8%
78.7%
82.5%
87.7%
80.5%

88.0%

(3 ] RQ3 Finding: Variable-size generation improves downstream robustness and

class balance

Key Observations

&6 Trade-off: Fixed-size promotes stability; variable-size improves robustness

across heterogeneous workloads

% Exposure: Variable-size exposes algorithms to broader range of execution

depths and branching

Clustering Analysis (NMI Scores)

Lower NMI = stronger mixing between real and synthetic samples

SN Fixed-Size NMI =0.072
o

TT Fixed-Size NMI =0.117
caE——

SN Variable-Size NMI =0.142
CEEE——

TT Variable-Size NMI = 0.142
caEEE—

Instance-Level Similarity

Average Overall Similarity:

20.6% 26.2% 30.5% 63.9%

SN Var TT Var SN Fixed TT Fixed

RQ4 Finding:
Strong feature-space overlap; difficult to distinguish using unsupervised

techniques




PRACTICAL IMPACT:
INDUSTRIAL DEPLOYMENT & LESSONS LEARNED

‘= Key Lessons Learned

(> [+ L3 O
LJd
Bootstrap Combine Prefer Variable Avoid Over-Optimization
Use synthetic when real data is limited Add small fraction of real data When robustness is priority Don't sacrifice diversity for indistinguishability

“¥ Deployment Scenarios
Cold-Start Training

Bootstrap models when insufficient production traces have been collected. Synthetic-only training achieves non-trivial generalization.

Privacy-Preserving Sharing

Enable cross-team collaboration without exposing sensitive execution details. Synthetic traces preserve behavioral characteristics safely.

Testing & Benchmarking

Provide controllable yet realistic workloads for evaluating AlOps pipelines. Variable-size generation tests robustness to heterogeneous patterns.




Conclusion:
Future Work

¥/ Key Findings

*

Hierarchical VAE provides viable foundation for privacy-aware trace

synthesis

Synthetic traces generalize effectively to real-world data under distribution
shift

Hybrid training (10% real) yields near-optimal 99-100% performance

Variable-size generation improves robustness across heterogeneous

workloads

“f Future Directions

Richer Temporal Dynamics

Incorporate resource metrics, cross-trace dependencies for performance

diagnosis

Online Integration

Integrate into continual learning pipelines for evolving workloads

Production Deployment

Large-scale validation with industry partners under real operational constraints

Overall: Hierarchical generative modeling provides a viable and scalable foundation for privacy-aware distributed trace synthesis, with clear

applicability to real-world observability and AlOps pipelines.

Source code available at

github.com/sneh2001patel/distributed_trace_research
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