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What is LTTng?
Babeltrace?



Extremely low overhead troubleshooting tool

- First released in 2005
- Open Source

A collection of projects

- Kernel tracer (LTTng-modules)
- User space tracer (LTTng-UST)
- Tracing control tools (LTTng-tools)
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What is Babeltrace 2?

Trace manipulation toolkit
* Allows decoding and transformation of trace files

* Extensible via a plug-in architecture
e Support other trace formats
* Implement analyses

EfficiOS Ericsson Tracing Workshop — January 2026
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Update Outline

LTTng Research & Development
*In 2025
* Ongoing

EfficiOS DORSAL Progress Report Meeting — February 2026



2025 Research & Development



LTThg R&D
In 2025

EficiOS

Improving
Memory Usage

User
Interviews
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10



Tackling our memory footprint



Shared buffers

EficiOS
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A detour to the ring buffers!



Buffer stall recovery

Feature: Recover from per-user ring buffer stalled state

Advantages

* Gracefully recover when an application is asynchronously terminated
while writing to the ring buffer

 Warn when an application is stopped for a long time while writing to
the ring buffer

Disadvantage
* Additional overhead when writing an event to the ring buffer

EfficiOS DORSAL Progress Report Meeting — February 2026
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Tackling our memory footprint



Shared buffers

Feature: Per-channel buffers

Advantages

* Memory footprint does not scale with number of CPUs
* More resistant to variability in trace production

* More intuitive traces

Disadvantage
* More contention when writing trace data to buffers

EfficiOS DORSAL Progress Report Meeting — February 2026
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Allocating buffers on-demand

Feature: Preallocation policy

Advantages
* Lower initial memory footprint
* Widens viability of per-CPU buffers

Disadvantages
* Small latency when need to allocate a subbuffer
* Less predictable memory usage

EfficiOS DORSAL Progress Report Meeting — February 2026
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Reclaim unused memory

Feature: Reclaim memory command

Advantages
* Scale memory usage based on tracing load

Disadvantage
* Some additional overhead
* Small latency when need to (re)allocate a subbuffer

EfficiOS DORSAL Progress Report Meeting — February 2026
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Towards facilitating data
analysis



Moving towards CTF 2

Babeltrace 2.1 — Add reading and producing CTF 2 traces
* Release: Q1 2025

LTTng 2.15 — Add producing CTF 2 traces

* Release candidate currently published for testing
* Release: Q1 2026
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Benefits of CTF 2

 Better trace readability

* Broader type support

* Cleaner trace streaming

* Easier decoding

EficiOS

DORSAL Progress Report Meeting — February 2026
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Upcoming Work



Lightweight insight

Feature: Aggregation maps, trace hit counters

e Count number of times an event (or event set) occurs
* Super lightweight — Doesn't require tracing buffers

* Powerful building block for responsive trace control

* Upcoming: LTTng 2.16

EfficiOS DORSAL Progress Report Meeting — February 2026
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Ongoing R&D



LTTng R&D Objectives

* Reduce overhead
* Improve instrumentation
* Improve trace data relevance

* Facilitate tracing configuration

* Enhance trace model for:
 Trace presentation,
e Analysis automation.

EfficiOS DORSAL Progress Report Meeting — February 2026
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Lightweight Event Content Statistics

EficiOS

Objectives: [overhead]
Lightweight event content statistics without tracing

Ln— flace aggregation of statistics distributions with less overhead than the LTTng ring
utfer

Extension of LTTng trace hit counters
Distribution bucket indexes are a function of event field payload values

These statistics distributions can then be visualized as histograms or fed into
automation.

For instance, it would allow:
* showing a histogram of message size for sent/received network communication, or

* showing a sum of error counts per error type, or

* analyzing the efficiency of layers of software cache mechanisms, counting the number of cache
hit vs misses.

DORSAL Progress Report Meeting — February 2026
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Fast trace control feedback loop

* Objectives: [relevance]

* Fast tracing start and stop
* Introduce a fast start/stop flag in shared memory
* Quickly react to specific events to immediately trace with more or less
details
* Fast counter-based trace control
* Track resources across many CPUs
* Hierarchical carry propagation tree provides a fast approximation

* Trace hit counters extension to provide immediate trace filtering
feedback loop based on counter sum approximation

EfficiOS DORSAL Progress Report Meeting — February 2026
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Reduce LTTng Memory Usage

* Objectives: [overhead, configuration]

* Limiting memory to N tracing buffers without limiting which N
CPUs are used

* Concurrency IDs for containers
* Maximum concurrency ID limits per container

* Relevant use-case: containers restricted by CPU time and number
of threads rather than by cpusets

EfficiOS DORSAL Progress Report Meeting — February 2026
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Improve LTTng static instrumentation API

* Objectives: [instrumentation, trace model]
* New libside instrumentation APl and SIDE ABI specification

* Benefits:
* Improved error reporting compared to LTThg-UST tracepoints
* Application state dumps
* Instrumentation of other languages/runtimes
* Integration with other tracers
* Compiler-based static type checker

* Simpler and more efficient RCU implementation than the
implementation in LTTng-UST

EfficiOS DORSAL Progress Report Meeting — February 2026
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Dynamic Instrumentation

* Objectives: [overhead, instrumentation]
* Add fast dynamic instrumentation

* Libpatch enables dynamic instrumentation of userspace applications
with low overhead.

* It achieves results similar to Dyninst with a fraction of the runtime
latency when inserting the instrumentation on a live process.

* Integrating it with LTTng-UST and libside would allow end users to
augment the information gathered by static instrumentation with
dynamic instrumentation.

* Integration with DWARF would allow specifying which variables
should be captured as payload.

EfficiOS DORSAL Progress Report Meeting — February 2026
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Reduce Userspace Code Patching Overhead

* Objectives: [overhead, instrumentation]

* Reduce overhead of code patching for static and dynamic
Instrumentation.

* Proposing a new “pokev” Linux system call

» Takes care of userspace code patching without losing executable page
sharing across processes due to Copy-on-Write (CoW).

* Eliminates significant overhead in terms of memory and CPU cache use
when instrumenting core libraries which are used by many processes by
preventing each process from allocating its own copy of the modified
pages.

* Handle XMC (cross-CPU code modification) architectural requirements.
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Summary



Tracing Challenges

Minimizing resource usage...

* Memory footprint

* CPU overhead

...While extracting helpful data.

EficiOS
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Recent LTTng R&D

Minimizing resource usage...
 Memory footprint (LTTng 2.14, 2.15, 2.16)
* CPU overhead (LTTng 2.16)

...While extracting helpful data. (LTTng 2.16)
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LTTng Releases

LTTng 2.14
e Per-channel buffers

LTTng 2.15 - Q1 2026

* Further improve memory footprint
* Improve tracing buffer robustness
* Produce CTF 2 traces

LTTng 2.16 — Q2 2026
* Add Aggregation Maps (with Trace Hit Counters)

EfficiOS DORSAL Progress Report Meeting — February 2026
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Interested in more about...

Efficient memory usage of tracing buffers?
Improved impact of tracing tools?

Other topics?

Come speak with us at tomorrow's hackathon!

EfficiOS DORSAL Progress Report Meeting — February 2026
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Questions ?

* Links:

e https://www.efficios.com
https://Itthg.org
https://babeltrace.org
https://diamon.org
https://barectf.org

EfficiOS DORSAL Progress Report Meeting — February 2026
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https://www.efficios.com
https://www.efficios.com
https://lttng.org
https://lttng.org
https://babeltrace.org
https://babeltrace.org
https://diamon.org
https://diamon.org
https://barectf.org
https://barectf.org

Contacts

Mathieu Desnoyers — mathieu.desnoyers@efficios.com
Jérémie Galarneau — jgalar@efficios.com

Erica Bugden — ebugden@efficios.com

EfficiOS DORSAL Progress Report Meeting — February 2026
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Annex



References

« Common Trace Format 2 Specification

https.//diamon.org/ctf

* libside repository

https://github.com/efficios/libside

EfficiOS DORSAL Progress Report Meeting — February 2026
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Field classes common to CTF 1 and CTF 2

Field class CTF 1.8 CTF 2
Fixed-length integer v v
UTF-8 string v v
Floating point number v v
Fixed-length array v v
Dynamic-length array v v
Structure v v
Variant v v

EfficiOS DORSAL Progress Report Meeting — February 2026
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What does CTF 2 do better than CTF 1?2

Metadata format TSDL (custom DSL) JSON text sequences
* Non-trivial to parse. * Widely used standard format
with pre-existing parser libraries
in various languages.

Augment events and fields with X v
user-defined metadata

Associate user-defined name to
a value.

e Used to tailor analysis or pretty
printing of trace data.
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What does CTF 2 do better than CTF 1?2
Feddass i lova

BLOB

Optional
LEB128 variable length integer

X

UTF-16 and UTF-32 string character X

encoding

Fixed-length bit map

Boolean

EficiOS

v

* Record opaque binary blobs
* |ANA media type attribute

v
v
* Values > 64-bit range

* Common need in scientific computing

v

* Native string encoding on some platforms
 E.g. Windows, Java VM

v

* Associate names to specific bits in a bitmap
* Useful to represent flags

v

DORSAL Progress Report Meeting — February 2026

46



Linux Kernel & Community Work

Laying the foundation to...

Reduce userspace tracer CPU and memory overhead

EficiOS

Reduce CPU execution constraints by replacing hardware atomic instructions
with kernel-managed software transactions

* Restartable sequences (RSEQ) system call and GNU C library integration

Bound memory allocation to max number of concurrently running threads (rather
than allocate for each CPU)

e RSEQ concurrency IDs (mm_cid)

Reduce CPU data cache & branch prediction buffer impact of static
instrumentation

Concurrent code patching (XMC), page deduplication
e Also useful for code specialization at runtime

DORSAL Progress Report Meeting — February 2026
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Linux Kernel & Community Work

Laying the foundation to...

Enable kernel tracer to have previously unavailable data

 Handle page faults while tracing system calls
* Faultable system call tracepoints

Expand integration of LTTng-UST with the open source ecosystem
* Instrumentation coverage of runtimes, libraries, applications

* Tracer-agnostic "SIDE" instrumentation specification

* libside reference implementation for C/C++

* ABI targets instrumentation of various runtimes natively

EfficiOS DORSAL Progress Report Meeting — February 2026
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SIDE ABI RFC (libside)

* The SIDE ABI is currently at RFC stage, aiming to create a specification.
e https://github.com/efficios/libside/blob/master/doc/rfc-side-abi.txt

e Runtime/language agnostic,

e Supports multiple concurrent tracers,

* Instrumentation is not specific to a tracer,
* No need to rebuild applications if using a different tracer,

* Instrumentation can be either static or dynamic,

e Supports complex/nested types,

e Supports both static and dynamic types,

* libside is a C/C++ reference implementation for the System V ELF ABI.

EfficiOS DORSAL Progress Report Meeting — February 2026
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