
LTTng and 
Related Projects 

Update
DORSAL Progress Report Meeting

February 2026



Who is                ?

DORSAL Progress Report Meeting – February 2026 2



Our work
these days

3DORSAL Progress Report Meeting – February 2026

LTTng
Babeltracegdb GPU 

debugging

Linux kernel

Performance

Tracing



What is LTTng?
What is Babeltrace?

DORSAL Progress Report Meeting – February 2026 4



What is 

LTTng?

Extremely low overhead troubleshooting tool

• First released in 2005
• Open Source

A collection of projects

• Kernel tracer (LTTng-modules)
• User space tracer (LTTng-UST)
• Tracing control tools (LTTng-tools)

5DORSAL Progress Report Meeting – February 2026



What is Babeltrace 2?

6Ericsson Tracing Workshop – January 2026

Trace manipulation toolkit

• Allows decoding and transformation of trace files

• Extensible via a plug-in architecture
• Support other trace formats

• Implement analyses



DORSAL Progress Report Meeting – February 2026 7



Update Outline

LTTng Research & Development
• In 2025
• Ongoing

8DORSAL Progress Report Meeting – February 2026



2025 Research & Development

DORSAL Progress Report Meeting – February 2026 9



LTTng R&D
in 2025

10DORSAL Progress Report Meeting – February 2026

Improving
Memory Usage

User 
Interviews

Linux 
Kernel

Facilitating
Data Analysis



Tackling our memory footprint

DORSAL Progress Report Meeting – February 2026 11



Shared buffers

12DORSAL Progress Report Meeting – February 2026



A detour to the ring buffers!

DORSAL Progress Report Meeting – February 2026 13



Buffer stall recovery

14DORSAL Progress Report Meeting – February 2026

Feature: Recover from per-user ring buffer stalled state

Advantages
• Gracefully recover when an application is asynchronously terminated 

while writing to the ring buffer
• Warn when an application is stopped for a long time while writing to 

the ring buffer

Disadvantage
• Additional overhead when writing an event to the ring buffer



Tackling our memory footprint

DORSAL Progress Report Meeting – February 2026 15



Shared buffers

16DORSAL Progress Report Meeting – February 2026

Feature: Per-channel buffers

Advantages

• Memory footprint does not scale with number of CPUs

• More resistant to variability in trace production

• More intuitive traces

Disadvantage

• More contention when writing trace data to buffers



Allocating buffers on-demand

17DORSAL Progress Report Meeting – February 2026

Feature: Preallocation policy

Advantages

• Lower initial memory footprint

• Widens viability of per-CPU buffers

Disadvantages

• Small latency when need to allocate a subbuffer

• Less predictable memory usage



Reclaim unused memory

18DORSAL Progress Report Meeting – February 2026

Feature: Reclaim memory command

Advantages

• Scale memory usage based on tracing load

Disadvantage

• Some additional overhead

• Small latency when need to (re)allocate a subbuffer



19DORSAL Progress Report Meeting – February 2026



20DORSAL Progress Report Meeting – February 2026



Towards facilitating data 
analysis

DORSAL Progress Report Meeting – February 2026 21



Moving towards CTF 2

22DORSAL Progress Report Meeting – February 2026

Babeltrace 2.1 – Add reading and producing CTF 2 traces

• Release: Q1 2025

LTTng 2.15 – Add producing CTF 2 traces

• Release candidate currently published for testing

• Release: Q1 2026



Benefits of CTF 2

23DORSAL Progress Report Meeting – February 2026

• Better trace readability

• Broader type support

• Cleaner trace streaming

• Easier decoding



DORSAL Progress Report Meeting – February 2026 24



Upcoming Work

DORSAL Progress Report Meeting – February 2026 25



Lightweight insight

26DORSAL Progress Report Meeting – February 2026

Feature: Aggregation maps, trace hit counters

• Count number of times an event (or event set) occurs

• Super lightweight – Doesn't require tracing buffers

• Powerful building block for responsive trace control

• Upcoming: LTTng 2.16



Ongoing R&D

DORSAL Progress Report Meeting – February 2026 27



LTTng R&D Objectives

28DORSAL Progress Report Meeting – February 2026

• Reduce overhead

• Improve instrumentation

• Improve trace data relevance

• Facilitate tracing configuration

• Enhance trace model for:
• Trace presentation,

• Analysis automation.



Lightweight Event Content Statistics

29DORSAL Progress Report Meeting – February 2026

• Objectives: [overhead]

• Lightweight event content statistics without tracing

• In-place aggregation of statistics distributions with less overhead than the LTTng ring 
buffer

• Extension of LTTng trace hit counters

• Distribution bucket indexes are a function of event field payload values

• These statistics distributions can then be visualized as histograms or fed into 
automation.

• For instance, it would allow:
• showing a histogram of message size for sent/received network communication, or 
• showing a sum of error counts per error type, or 
• analyzing the efficiency of layers of software cache mechanisms, counting the number of cache 

hit vs misses.



Fast trace control feedback loop

30DORSAL Progress Report Meeting – February 2026

• Objectives: [relevance]

• Fast tracing start and stop
• Introduce a fast start/stop flag in shared memory
• Quickly react to specific events to immediately trace with more or less 

details

• Fast counter-based trace control
• Track resources across many CPUs
• Hierarchical carry propagation tree provides a fast approximation
• Trace hit counters extension to provide immediate trace filtering 

feedback loop based on counter sum approximation



Reduce LTTng Memory Usage

31DORSAL Progress Report Meeting – February 2026

• Objectives: [overhead, configuration]

• Limiting memory to N tracing buffers without limiting which N 
CPUs are used

• Concurrency IDs for containers

• Maximum concurrency ID limits per container

• Relevant use-case: containers restricted by CPU time and number 
of threads rather than by cpusets



Improve LTTng static instrumentation API

32DORSAL Progress Report Meeting – February 2026

• Objectives: [instrumentation, trace model]

• New libside instrumentation API and SIDE ABI specification

• Benefits:
• Improved error reporting compared to LTTng-UST tracepoints
• Application state dumps
• Instrumentation of other languages/runtimes
• Integration with other tracers
• Compiler-based static type checker
• Simpler and more efficient RCU implementation than the 

implementation in LTTng-UST



Dynamic Instrumentation

33DORSAL Progress Report Meeting – February 2026

• Objectives: [overhead, instrumentation]
• Add fast dynamic instrumentation
• Libpatch enables dynamic instrumentation of userspace applications 

with low overhead.
• It achieves results similar to Dyninst with a fraction of the runtime 

latency when inserting the instrumentation on a live process. 
• Integrating it with LTTng-UST and libside would allow end users to 

augment the information gathered by static instrumentation with 
dynamic instrumentation.

• Integration with DWARF would allow specifying which variables 
should be captured as payload. 



Reduce Userspace Code Patching Overhead

34DORSAL Progress Report Meeting – February 2026

• Objectives: [overhead, instrumentation]

• Reduce overhead of code patching for static and dynamic 
instrumentation.

• Proposing a new “pokev” Linux system call
• Takes care of userspace code patching without losing executable page 

sharing across processes due to Copy-on-Write (CoW).
• Eliminates significant overhead in terms of memory and CPU cache use 

when instrumenting core libraries which are used by many processes by 
preventing each process from allocating its own copy of the modified 
pages.

• Handle XMC (cross-CPU code modification) architectural requirements.



Summary

DORSAL Progress Report Meeting – February 2026 35



Tracing Challenges

36DORSAL Progress Report Meeting – February 2026

Minimizing resource usage...

• Memory footprint

• CPU overhead

...while extracting helpful data.



Recent LTTng R&D

37DORSAL Progress Report Meeting – February 2026

Minimizing resource usage...

• Memory footprint (LTTng 2.14, 2.15, 2.16)

• CPU overhead (LTTng 2.16)

...while extracting helpful data. (LTTng 2.16)



LTTng Releases

38DORSAL Progress Report Meeting – February 2026

LTTng 2.14

• Per-channel buffers

LTTng 2.15 – Q1 2026

• Further improve memory footprint

• Improve tracing buffer robustness

• Produce CTF 2 traces

LTTng 2.16 – Q2 2026

• Add Aggregation Maps (with Trace Hit Counters)



Interested in more about...

39DORSAL Progress Report Meeting – February 2026

Efficient memory usage of tracing buffers?

Improved impact of tracing tools?

Other topics?

Come speak with us at tomorrow's hackathon!



Questions ?

• Links:
• https://www.efficios.com

• https://lttng.org

• https://babeltrace.org

• https://diamon.org

• https://barectf.org

40DORSAL Progress Report Meeting – February 2026

https://www.efficios.com
https://www.efficios.com
https://lttng.org
https://lttng.org
https://babeltrace.org
https://babeltrace.org
https://diamon.org
https://diamon.org
https://barectf.org
https://barectf.org


Contacts 

41DORSAL Progress Report Meeting – February 2026

Mathieu Desnoyers – mathieu.desnoyers@efficios.com

Jérémie Galarneau – jgalar@efficios.com

Erica Bugden – ebugden@efficios.com



Annex

DORSAL Progress Report Meeting – February 2026 42



References

• Common Trace Format 2 Specification

https://diamon.org/ctf

• libside repository

https://github.com/efficios/libside

43DORSAL Progress Report Meeting – February 2026

https://diamon.org/ctf
https://github.com/efficios/libside


Field classes common to CTF 1 and CTF 2

44DORSAL Progress Report Meeting – February 2026

Field class CTF 1.8 CTF 2

Fixed-length integer

UTF-8 string

Floating point number

Fixed-length array

Dynamic-length array

Structure

Variant



What does CTF 2 do better than CTF 1?

45DORSAL Progress Report Meeting – February 2026

CTF 1.8 CTF 2

Metadata format TSDL (custom DSL)
• Non-trivial to parse.

JSON text sequences
• Widely used standard format 

with pre-existing parser libraries 
in various languages.

Augment events and fields with 
user-defined metadata

🗙  
• Associate user-defined name to 

a value.
• Used to tailor analysis or pretty 

printing of trace data.



What does CTF 2 do better than CTF 1?

46DORSAL Progress Report Meeting – February 2026

Field class CTF 1.8 CTF 2

BLOB 🗙
• Record opaque binary blobs
• IANA media type attribute

Optional 🗙

LEB128 variable length integer 🗙
• Values > 64-bit range
• Common need in scientific computing

UTF-16 and UTF-32 string character 
encoding

🗙
• Native string encoding on some platforms
• E.g. Windows, Java VM

Fixed-length bit map 🗙
• Associate names to specific bits in a bitmap
• Useful to represent flags

Boolean 🗙



Linux Kernel & Community Work

47DORSAL Progress Report Meeting – February 2026

Laying the foundation to...

Reduce userspace tracer CPU and memory overhead 

• Reduce CPU execution constraints by replacing hardware atomic instructions 
with kernel-managed software transactions
• Restartable sequences (RSEQ) system call and GNU C library integration

• Bound memory allocation to max number of concurrently running threads (rather 
than allocate for each CPU)
• RSEQ concurrency IDs (mm_cid)

• Reduce CPU data cache & branch prediction buffer impact of static 
instrumentation
• Concurrent code patching (XMC), page deduplication
• Also useful for code specialization at runtime



Linux Kernel & Community Work

48DORSAL Progress Report Meeting – February 2026

Laying the foundation to...

Enable kernel tracer to have previously unavailable data
• Handle page faults while tracing system calls

• Faultable system call tracepoints

Expand integration of LTTng-UST with the open source ecosystem
• Instrumentation coverage of runtimes, libraries, applications
• Tracer-agnostic "SIDE" instrumentation specification
• libside reference implementation for C/C++
• ABI targets instrumentation of various runtimes natively



SIDE ABI RFC (libside)

• The SIDE ABI is currently at RFC stage, aiming to create a specification.
• https://github.com/efficios/libside/blob/master/doc/rfc-side-abi.txt

• Runtime/language agnostic,

• Supports multiple concurrent tracers,

• Instrumentation is not specific to a tracer,
• No need to rebuild applications if using a different tracer,

• Instrumentation can be either static or dynamic,

• Supports complex/nested types,

• Supports both static and dynamic types,

• libside is a C/C++ reference implementation for the System V ELF ABI.

49DORSAL Progress Report Meeting – February 2026

https://github.com/efficios/libside/blob/master/doc/rfc-side-abi.txt
https://github.com/efficios/libside/blob/master/doc/rfc-side-abi.txt
https://github.com/efficios/libside/blob/master/doc/rfc-side-abi.txt
https://github.com/efficios/libside/blob/master/doc/rfc-side-abi.txt
https://github.com/efficios/libside/blob/master/doc/rfc-side-abi.txt
https://github.com/efficios/libside/blob/master/doc/rfc-side-abi.txt

	Slide 1: LTTng and Related Projects Update
	Slide 2: Who is                ?
	Slide 3: Our work these days
	Slide 4: What is LTTng? What is Babeltrace?
	Slide 5
	Slide 6: What is Babeltrace 2?
	Slide 7
	Slide 8: Update Outline
	Slide 9: 2025 Research & Development
	Slide 10: LTTng R&D in 2025 
	Slide 11: Tackling our memory footprint
	Slide 12: Shared buffers
	Slide 13: A detour to the ring buffers!
	Slide 14: Buffer stall recovery
	Slide 15: Tackling our memory footprint
	Slide 16: Shared buffers
	Slide 17: Allocating buffers on-demand
	Slide 18: Reclaim unused memory
	Slide 19
	Slide 20
	Slide 21: Towards facilitating data analysis
	Slide 22: Moving towards CTF 2
	Slide 23: Benefits of CTF 2
	Slide 24
	Slide 25: Upcoming Work
	Slide 26: Lightweight insight
	Slide 27: Ongoing R&D
	Slide 28: LTTng R&D Objectives
	Slide 29: Lightweight Event Content Statistics
	Slide 30: Fast trace control feedback loop
	Slide 31: Reduce LTTng Memory Usage
	Slide 32: Improve LTTng static instrumentation API
	Slide 33: Dynamic Instrumentation
	Slide 34: Reduce Userspace Code Patching Overhead
	Slide 35: Summary
	Slide 36: Tracing Challenges
	Slide 37: Recent LTTng R&D
	Slide 38: LTTng Releases
	Slide 39: Interested in more about...
	Slide 40: Questions ?
	Slide 41: Contacts 
	Slide 42: Annex
	Slide 43: References
	Slide 44: Field classes common to CTF 1 and CTF 2
	Slide 45: What does CTF 2 do better than CTF 1?
	Slide 46: What does CTF 2 do better than CTF 1?
	Slide 47: Linux Kernel & Community Work
	Slide 48: Linux Kernel & Community Work
	Slide 49: SIDE ABI RFC (libside)

