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What is LTTng?
What is Babeltrace?
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What is 

LTTng?

Extremely low overhead troubleshooting tool

• First released in 2005
• Open Source

A collection of projects

• Kernel tracer (LTTng-modules)
• User space tracer (LTTng-UST)
• Tracing control tools (LTTng-tools)
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What is Babeltrace 2?

6Ericsson Tracing Workshop – January 2026

Trace manipulation toolkit

• Allows decoding and transformation of trace files

• Extensible via a plug-in architecture
• Support other trace formats

• Implement analyses
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Update Outline

LTTng Research & Development
• In 2025
• Ongoing
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2025 Research & Development
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LTTng R&D
in 2025
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Improving
Memory Usage

User 
Interviews

Linux 
Kernel

Facilitating
Data Analysis



Tackling our memory footprint
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Shared buffers
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A detour to the ring buffers!
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Buffer stall recovery
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Feature: Recover from per-user ring buffer stalled state

Advantages
• Gracefully recover when an application is asynchronously terminated 

while writing to the ring buffer
• Warn when an application is stopped for a long time while writing to 

the ring buffer

Disadvantage
• Additional overhead when writing an event to the ring buffer



Tackling our memory footprint
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Shared buffers
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Feature: Per-channel buffers

Advantages

• Memory footprint does not scale with number of CPUs

• More resistant to variability in trace production

• More intuitive traces

Disadvantage

• More contention when writing trace data to buffers



Allocating buffers on-demand

17DORSAL Progress Report Meeting – February 2026

Feature: Preallocation policy

Advantages

• Lower initial memory footprint

• Widens viability of per-CPU buffers

Disadvantages

• Small latency when need to allocate a subbuffer

• Less predictable memory usage



Reclaim unused memory
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Feature: Reclaim memory command

Advantages

• Scale memory usage based on tracing load

Disadvantage

• Some additional overhead

• Small latency when need to (re)allocate a subbuffer
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Towards facilitating data 
analysis
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Moving towards CTF 2
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Babeltrace 2.1 – Add reading and producing CTF 2 traces

• Release: Q1 2025

LTTng 2.15 – Add producing CTF 2 traces

• Release candidate currently published for testing

• Release: Q1 2026



Benefits of CTF 2
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• Better trace readability

• Broader type support

• Cleaner trace streaming

• Easier decoding
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Upcoming Work
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Lightweight insight
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Feature: Aggregation maps, trace hit counters

• Count number of times an event (or event set) occurs

• Super lightweight – Doesn't require tracing buffers

• Powerful building block for responsive trace control

• Upcoming: LTTng 2.16



Ongoing R&D
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LTTng R&D Objectives
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• Reduce overhead

• Improve instrumentation

• Improve trace data relevance

• Facilitate tracing configuration

• Enhance trace model for:
• Trace presentation,

• Analysis automation.



Lightweight Event Content Statistics
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• Objectives: [overhead]

• Lightweight event content statistics without tracing

• In-place aggregation of statistics distributions with less overhead than the LTTng ring 
buffer

• Extension of LTTng trace hit counters

• Distribution bucket indexes are a function of event field payload values

• These statistics distributions can then be visualized as histograms or fed into 
automation.

• For instance, it would allow:
• showing a histogram of message size for sent/received network communication, or 
• showing a sum of error counts per error type, or 
• analyzing the efficiency of layers of software cache mechanisms, counting the number of cache 

hit vs misses.



Fast trace control feedback loop
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• Objectives: [relevance]

• Fast tracing start and stop
• Introduce a fast start/stop flag in shared memory
• Quickly react to specific events to immediately trace with more or less 

details

• Fast counter-based trace control
• Track resources across many CPUs
• Hierarchical carry propagation tree provides a fast approximation
• Trace hit counters extension to provide immediate trace filtering 

feedback loop based on counter sum approximation



Reduce LTTng Memory Usage
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• Objectives: [overhead, configuration]

• Limiting memory to N tracing buffers without limiting which N 
CPUs are used

• Concurrency IDs for containers

• Maximum concurrency ID limits per container

• Relevant use-case: containers restricted by CPU time and number 
of threads rather than by cpusets



Improve LTTng static instrumentation API
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• Objectives: [instrumentation, trace model]

• New libside instrumentation API and SIDE ABI specification

• Benefits:
• Improved error reporting compared to LTTng-UST tracepoints
• Application state dumps
• Instrumentation of other languages/runtimes
• Integration with other tracers
• Compiler-based static type checker
• Simpler and more efficient RCU implementation than the 

implementation in LTTng-UST



Dynamic Instrumentation
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• Objectives: [overhead, instrumentation]
• Add fast dynamic instrumentation
• Libpatch enables dynamic instrumentation of userspace applications 

with low overhead.
• It achieves results similar to Dyninst with a fraction of the runtime 

latency when inserting the instrumentation on a live process. 
• Integrating it with LTTng-UST and libside would allow end users to 

augment the information gathered by static instrumentation with 
dynamic instrumentation.

• Integration with DWARF would allow specifying which variables 
should be captured as payload. 



Reduce Userspace Code Patching Overhead
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• Objectives: [overhead, instrumentation]

• Reduce overhead of code patching for static and dynamic 
instrumentation.

• Proposing a new “pokev” Linux system call
• Takes care of userspace code patching without losing executable page 

sharing across processes due to Copy-on-Write (CoW).
• Eliminates significant overhead in terms of memory and CPU cache use 

when instrumenting core libraries which are used by many processes by 
preventing each process from allocating its own copy of the modified 
pages.

• Handle XMC (cross-CPU code modification) architectural requirements.



Summary
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Tracing Challenges
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Minimizing resource usage...

• Memory footprint

• CPU overhead

...while extracting helpful data.



Recent LTTng R&D
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Minimizing resource usage...

• Memory footprint (LTTng 2.14, 2.15, 2.16)

• CPU overhead (LTTng 2.16)

...while extracting helpful data. (LTTng 2.16)



LTTng Releases
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LTTng 2.14

• Per-channel buffers

LTTng 2.15 – Q1 2026

• Further improve memory footprint

• Improve tracing buffer robustness

• Produce CTF 2 traces

LTTng 2.16 – Q2 2026

• Add Aggregation Maps (with Trace Hit Counters)



Interested in more about...
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Efficient memory usage of tracing buffers?

Improved impact of tracing tools?

Other topics?

Come speak with us at tomorrow's hackathon!



Questions ?

• Links:
• https://www.efficios.com

• https://lttng.org

• https://babeltrace.org

• https://diamon.org

• https://barectf.org
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https://www.efficios.com
https://www.efficios.com
https://lttng.org
https://lttng.org
https://babeltrace.org
https://babeltrace.org
https://diamon.org
https://diamon.org
https://barectf.org
https://barectf.org


Contacts 

41DORSAL Progress Report Meeting – February 2026

Mathieu Desnoyers – mathieu.desnoyers@efficios.com

Jérémie Galarneau – jgalar@efficios.com

Erica Bugden – ebugden@efficios.com



Annex
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References

• Common Trace Format 2 Specification

https://diamon.org/ctf

• libside repository

https://github.com/efficios/libside
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https://diamon.org/ctf
https://github.com/efficios/libside


Field classes common to CTF 1 and CTF 2
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Field class CTF 1.8 CTF 2

Fixed-length integer

UTF-8 string

Floating point number

Fixed-length array

Dynamic-length array

Structure

Variant



What does CTF 2 do better than CTF 1?
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CTF 1.8 CTF 2

Metadata format TSDL (custom DSL)
• Non-trivial to parse.

JSON text sequences
• Widely used standard format 

with pre-existing parser libraries 
in various languages.

Augment events and fields with 
user-defined metadata

🗙  
• Associate user-defined name to 

a value.
• Used to tailor analysis or pretty 

printing of trace data.



What does CTF 2 do better than CTF 1?
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Field class CTF 1.8 CTF 2

BLOB 🗙
• Record opaque binary blobs
• IANA media type attribute

Optional 🗙

LEB128 variable length integer 🗙
• Values > 64-bit range
• Common need in scientific computing

UTF-16 and UTF-32 string character 
encoding

🗙
• Native string encoding on some platforms
• E.g. Windows, Java VM

Fixed-length bit map 🗙
• Associate names to specific bits in a bitmap
• Useful to represent flags

Boolean 🗙



Linux Kernel & Community Work
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Laying the foundation to...

Reduce userspace tracer CPU and memory overhead 

• Reduce CPU execution constraints by replacing hardware atomic instructions 
with kernel-managed software transactions
• Restartable sequences (RSEQ) system call and GNU C library integration

• Bound memory allocation to max number of concurrently running threads (rather 
than allocate for each CPU)
• RSEQ concurrency IDs (mm_cid)

• Reduce CPU data cache & branch prediction buffer impact of static 
instrumentation
• Concurrent code patching (XMC), page deduplication
• Also useful for code specialization at runtime



Linux Kernel & Community Work
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Laying the foundation to...

Enable kernel tracer to have previously unavailable data
• Handle page faults while tracing system calls

• Faultable system call tracepoints

Expand integration of LTTng-UST with the open source ecosystem
• Instrumentation coverage of runtimes, libraries, applications
• Tracer-agnostic "SIDE" instrumentation specification
• libside reference implementation for C/C++
• ABI targets instrumentation of various runtimes natively



SIDE ABI RFC (libside)

• The SIDE ABI is currently at RFC stage, aiming to create a specification.
• https://github.com/efficios/libside/blob/master/doc/rfc-side-abi.txt

• Runtime/language agnostic,

• Supports multiple concurrent tracers,

• Instrumentation is not specific to a tracer,
• No need to rebuild applications if using a different tracer,

• Instrumentation can be either static or dynamic,

• Supports complex/nested types,

• Supports both static and dynamic types,

• libside is a C/C++ reference implementation for the System V ELF ABI.
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https://github.com/efficios/libside/blob/master/doc/rfc-side-abi.txt
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