LTTng and
Related Projects

Update

DORSAL Progress Report Meeting
February 2026

EficiOS

Who is {fficiOS?

Our work
these days

Tracing
LTTn g Performance

gdb eru Babeltrace
debugging

Linux kernel

EfficiOS DORSAL Progress Report Meeting — February 2026

What is LTTng?
Babeltrace?

Extremely low overhead troubleshooting tool

- First released in 2005
- Open Source

A collection of projects

- Kernel tracer (LTTng-modules)
- User space tracer (LTTng-UST)
- Tracing control tools (LTTng-tools)

EfficiOS DORSAL Progress Report Meeting — February 2026

What is Babeltrace 2?

Trace manipulation toolkit
* Allows decoding and transformation of trace files

* Extensible via a plug-in architecture
e Support other trace formats
* Implement analyses

EfficiOS Ericsson Tracing Workshop — January 2026

DORSAL Progress Report Meeting — February 2026

Update Outline

LTTng Research & Development
*In 2025
* Ongoing

EfficiOS DORSAL Progress Report Meeting — February 2026

2025 Research & Development

LTThg R&D
In 2025

EficiOS

Improving
Memory Usage

User
Interviews

DORSAL Progress Report Meeting — February 2026

Facilitating
Data Analysis

10

Tackling our memory footprint

Shared buffers

EficiOS

DORSAL Progress Report Meeting — February 2026

12

A detour to the ring buffers!

Buffer stall recovery

Feature: Recover from per-user ring buffer stalled state

Advantages

* Gracefully recover when an application is asynchronously terminated
while writing to the ring buffer

 Warn when an application is stopped for a long time while writing to
the ring buffer

Disadvantage
* Additional overhead when writing an event to the ring buffer

EfficiOS DORSAL Progress Report Meeting — February 2026

14

Tackling our memory footprint

Shared buffers

Feature: Per-channel buffers

Advantages

* Memory footprint does not scale with number of CPUs
* More resistant to variability in trace production

* More intuitive traces

Disadvantage
* More contention when writing trace data to buffers

EfficiOS DORSAL Progress Report Meeting — February 2026

16

Allocating buffers on-demand

Feature: Preallocation policy

Advantages
* Lower initial memory footprint
* Widens viability of per-CPU buffers

Disadvantages
* Small latency when need to allocate a subbuffer
* Less predictable memory usage

EfficiOS DORSAL Progress Report Meeting — February 2026

17

Reclaim unused memory

Feature: Reclaim memory command

Advantages
* Scale memory usage based on tracing load

Disadvantage
* Some additional overhead
* Small latency when need to (re)allocate a subbuffer

EfficiOS DORSAL Progress Report Meeting — February 2026

18

DORSAL Progress Report Meeting — February 2026

» Memory_usage: [eeeesssssssssssnd] 4.22 MiB / 9.12 MiB
i For UID 1888 (64-bit): [eeseeseessssses) 4.22 MiB / 9.12 MiB
' CPU T L L] 232.88 KiB / 5B84.88 KiB

CPU L I) b8.HA KiE / 584.88 KiB
i CPU 2 [eeesseee00000000000000000000000000) 528.88 KiB / 584.88 KiB
CRU S I)] 188.88 kiB 7/ 584.BH Kib
i CPU 4 [eeesseseessssstssssttsssstsssstsns) 528.88 KiB / 584.88 KiB
CRU) T T T T T - -y T D T) 12 .84 KiE / 584.88 KiB
' CPU 6: [oeeeeeRIIRRRRRRRRRRRRRRE)] 376.88 KiB / 5B84.8B8 KiB
CPU L 0 L) 8.88 KiE / 5B8B4.H8 KiB
' CPU 8. [eeesssessssststttttstttetettnsee)] 5B4.88 KiB / 584.88 KiB
CPU 0L 0 UL) 8.88 KiE / 5B8B4.H8 KiB
i CFU 18: [eeeesessetbBBBBRBRRRRRl v)] 352.88 KiB / 584.88 KiB
CFU 11: [eeeesessssssstsssttstttsttstssdensd] 528.88 KiB / 5B84.88 KiB
i CFU 12: [eeeesessststdttbbbbbbbBbBRRRg] 436.88 KiB / 584.8BH KibB
' I 1 B) Z8.8H8 KiB / 584.88 KiB
i CFU 14: [eeeesessssssststttttbbtbbbsbdbdl)] 472.88 KiB / 584.8BH KibB
' 8 O 1 B e) 84.88 KiB / 584.88 KiB

DORSAL Progress Report Meeting — February 2026

Towards facilitating data
analysis

Moving towards CTF 2

Babeltrace 2.1 — Add reading and producing CTF 2 traces
* Release: Q1 2025

LTTng 2.15 — Add producing CTF 2 traces

* Release candidate currently published for testing
* Release: Q1 2026

EfficiOS DORSAL Progress Report Meeting — February 2026

22

Benefits of CTF 2

 Better trace readability

* Broader type support

* Cleaner trace streaming

* Easier decoding

EficiOS

DORSAL Progress Report Meeting — February 2026

23

DORSAL Progress Report Meeting — February 2026

24

Upcoming Work

Lightweight insight

Feature: Aggregation maps, trace hit counters

e Count number of times an event (or event set) occurs
* Super lightweight — Doesn't require tracing buffers

* Powerful building block for responsive trace control

* Upcoming: LTTng 2.16

EfficiOS DORSAL Progress Report Meeting — February 2026

26

Ongoing R&D

LTTng R&D Objectives

* Reduce overhead
* Improve instrumentation
* Improve trace data relevance

* Facilitate tracing configuration

* Enhance trace model for:
 Trace presentation,
e Analysis automation.

EfficiOS DORSAL Progress Report Meeting — February 2026

28

Lightweight Event Content Statistics

EficiOS

Objectives: [overhead]
Lightweight event content statistics without tracing

Ln— flace aggregation of statistics distributions with less overhead than the LTTng ring
utfer

Extension of LTTng trace hit counters
Distribution bucket indexes are a function of event field payload values

These statistics distributions can then be visualized as histograms or fed into
automation.

For instance, it would allow:
* showing a histogram of message size for sent/received network communication, or

* showing a sum of error counts per error type, or

* analyzing the efficiency of layers of software cache mechanisms, counting the number of cache
hit vs misses.

DORSAL Progress Report Meeting — February 2026

29

Fast trace control feedback loop

* Objectives: [relevance]

* Fast tracing start and stop
* Introduce a fast start/stop flag in shared memory
* Quickly react to specific events to immediately trace with more or less
details
* Fast counter-based trace control
* Track resources across many CPUs
* Hierarchical carry propagation tree provides a fast approximation

* Trace hit counters extension to provide immediate trace filtering
feedback loop based on counter sum approximation

EfficiOS DORSAL Progress Report Meeting — February 2026

30

Reduce LTTng Memory Usage

* Objectives: [overhead, configuration]

* Limiting memory to N tracing buffers without limiting which N
CPUs are used

* Concurrency IDs for containers
* Maximum concurrency ID limits per container

* Relevant use-case: containers restricted by CPU time and number
of threads rather than by cpusets

EfficiOS DORSAL Progress Report Meeting — February 2026

31

Improve LTTng static instrumentation API

* Objectives: [instrumentation, trace model]
* New libside instrumentation APl and SIDE ABI specification

* Benefits:
* Improved error reporting compared to LTThg-UST tracepoints
* Application state dumps
* Instrumentation of other languages/runtimes
* Integration with other tracers
* Compiler-based static type checker

* Simpler and more efficient RCU implementation than the
implementation in LTTng-UST

EfficiOS DORSAL Progress Report Meeting — February 2026

32

Dynamic Instrumentation

* Objectives: [overhead, instrumentation]
* Add fast dynamic instrumentation

* Libpatch enables dynamic instrumentation of userspace applications
with low overhead.

* It achieves results similar to Dyninst with a fraction of the runtime
latency when inserting the instrumentation on a live process.

* Integrating it with LTTng-UST and libside would allow end users to
augment the information gathered by static instrumentation with
dynamic instrumentation.

* Integration with DWARF would allow specifying which variables
should be captured as payload.

EfficiOS DORSAL Progress Report Meeting — February 2026

33

Reduce Userspace Code Patching Overhead

* Objectives: [overhead, instrumentation]

* Reduce overhead of code patching for static and dynamic
Instrumentation.

* Proposing a new “pokev” Linux system call

» Takes care of userspace code patching without losing executable page
sharing across processes due to Copy-on-Write (CoW).

* Eliminates significant overhead in terms of memory and CPU cache use
when instrumenting core libraries which are used by many processes by
preventing each process from allocating its own copy of the modified
pages.

* Handle XMC (cross-CPU code modification) architectural requirements.

EﬁCiOS DORSAL Progress Report Meeting — February 2026 34

Summary

Tracing Challenges

Minimizing resource usage...

* Memory footprint

* CPU overhead

...While extracting helpful data.

EficiOS

DORSAL Progress Report Meeting — February 2026

36

Recent LTTng R&D

Minimizing resource usage...
 Memory footprint (LTTng 2.14, 2.15, 2.16)
* CPU overhead (LTTng 2.16)

...While extracting helpful data. (LTTng 2.16)

EfficiOS DORSAL Progress Report Meeting — February 2026

37

LTTng Releases

LTTng 2.14
e Per-channel buffers

LTTng 2.15 - Q1 2026

* Further improve memory footprint
* Improve tracing buffer robustness
* Produce CTF 2 traces

LTTng 2.16 — Q2 2026
* Add Aggregation Maps (with Trace Hit Counters)

EfficiOS DORSAL Progress Report Meeting — February 2026

38

Interested in more about...

Efficient memory usage of tracing buffers?
Improved impact of tracing tools?

Other topics?

Come speak with us at tomorrow's hackathon!

EfficiOS DORSAL Progress Report Meeting — February 2026

39

Questions ?

* Links:

e https://www.efficios.com
https://Itthg.org
https://babeltrace.org
https://diamon.org
https://barectf.org

EfficiOS DORSAL Progress Report Meeting — February 2026

40

https://www.efficios.com
https://www.efficios.com
https://lttng.org
https://lttng.org
https://babeltrace.org
https://babeltrace.org
https://diamon.org
https://diamon.org
https://barectf.org
https://barectf.org

Contacts

Mathieu Desnoyers — mathieu.desnoyers@efficios.com
Jérémie Galarneau — jgalar@efficios.com

Erica Bugden — ebugden@efficios.com

EfficiOS DORSAL Progress Report Meeting — February 2026

41

Annex

References

« Common Trace Format 2 Specification

https.//diamon.org/ctf

* libside repository

https://github.com/efficios/libside

EfficiOS DORSAL Progress Report Meeting — February 2026

43

https://diamon.org/ctf
https://github.com/efficios/libside

Field classes common to CTF 1 and CTF 2

Field class CTF 1.8 CTF 2
Fixed-length integer v v
UTF-8 string v v
Floating point number v v
Fixed-length array v v
Dynamic-length array v v
Structure v v
Variant v v

EfficiOS DORSAL Progress Report Meeting — February 2026

44

What does CTF 2 do better than CTF 1?2

Metadata format TSDL (custom DSL) JSON text sequences
* Non-trivial to parse. * Widely used standard format
with pre-existing parser libraries
in various languages.

Augment events and fields with X v
user-defined metadata

Associate user-defined name to
a value.

e Used to tailor analysis or pretty
printing of trace data.

EﬁCiOS DORSAL Progress Report Meeting — February 2026 45

What does CTF 2 do better than CTF 1?2
Feddass i lova

BLOB

Optional
LEB128 variable length integer

X

UTF-16 and UTF-32 string character X

encoding

Fixed-length bit map

Boolean

EficiOS

v

* Record opaque binary blobs
* |ANA media type attribute

v
v
* Values > 64-bit range

* Common need in scientific computing

v

* Native string encoding on some platforms
 E.g. Windows, Java VM

v

* Associate names to specific bits in a bitmap
* Useful to represent flags

v

DORSAL Progress Report Meeting — February 2026

46

Linux Kernel & Community Work

Laying the foundation to...

Reduce userspace tracer CPU and memory overhead

EficiOS

Reduce CPU execution constraints by replacing hardware atomic instructions
with kernel-managed software transactions

* Restartable sequences (RSEQ) system call and GNU C library integration

Bound memory allocation to max number of concurrently running threads (rather
than allocate for each CPU)

e RSEQ concurrency IDs (mm_cid)

Reduce CPU data cache & branch prediction buffer impact of static
instrumentation

Concurrent code patching (XMC), page deduplication
e Also useful for code specialization at runtime

DORSAL Progress Report Meeting — February 2026

47

Linux Kernel & Community Work

Laying the foundation to...

Enable kernel tracer to have previously unavailable data

 Handle page faults while tracing system calls
* Faultable system call tracepoints

Expand integration of LTTng-UST with the open source ecosystem
* Instrumentation coverage of runtimes, libraries, applications

* Tracer-agnostic "SIDE" instrumentation specification

* libside reference implementation for C/C++

* ABI targets instrumentation of various runtimes natively

EfficiOS DORSAL Progress Report Meeting — February 2026

48

SIDE ABI RFC (libside)

* The SIDE ABI is currently at RFC stage, aiming to create a specification.
e https://github.com/efficios/libside/blob/master/doc/rfc-side-abi.txt

e Runtime/language agnostic,

e Supports multiple concurrent tracers,

* Instrumentation is not specific to a tracer,
* No need to rebuild applications if using a different tracer,

* Instrumentation can be either static or dynamic,

e Supports complex/nested types,

e Supports both static and dynamic types,

* libside is a C/C++ reference implementation for the System V ELF ABI.

EfficiOS DORSAL Progress Report Meeting — February 2026

49

https://github.com/efficios/libside/blob/master/doc/rfc-side-abi.txt
https://github.com/efficios/libside/blob/master/doc/rfc-side-abi.txt
https://github.com/efficios/libside/blob/master/doc/rfc-side-abi.txt
https://github.com/efficios/libside/blob/master/doc/rfc-side-abi.txt
https://github.com/efficios/libside/blob/master/doc/rfc-side-abi.txt
https://github.com/efficios/libside/blob/master/doc/rfc-side-abi.txt

	Slide 1: LTTng and Related Projects Update
	Slide 2: Who is ?
	Slide 3: Our work these days
	Slide 4: What is LTTng? What is Babeltrace?
	Slide 5
	Slide 6: What is Babeltrace 2?
	Slide 7
	Slide 8: Update Outline
	Slide 9: 2025 Research & Development
	Slide 10: LTTng R&D in 2025
	Slide 11: Tackling our memory footprint
	Slide 12: Shared buffers
	Slide 13: A detour to the ring buffers!
	Slide 14: Buffer stall recovery
	Slide 15: Tackling our memory footprint
	Slide 16: Shared buffers
	Slide 17: Allocating buffers on-demand
	Slide 18: Reclaim unused memory
	Slide 19
	Slide 20
	Slide 21: Towards facilitating data analysis
	Slide 22: Moving towards CTF 2
	Slide 23: Benefits of CTF 2
	Slide 24
	Slide 25: Upcoming Work
	Slide 26: Lightweight insight
	Slide 27: Ongoing R&D
	Slide 28: LTTng R&D Objectives
	Slide 29: Lightweight Event Content Statistics
	Slide 30: Fast trace control feedback loop
	Slide 31: Reduce LTTng Memory Usage
	Slide 32: Improve LTTng static instrumentation API
	Slide 33: Dynamic Instrumentation
	Slide 34: Reduce Userspace Code Patching Overhead
	Slide 35: Summary
	Slide 36: Tracing Challenges
	Slide 37: Recent LTTng R&D
	Slide 38: LTTng Releases
	Slide 39: Interested in more about...
	Slide 40: Questions ?
	Slide 41: Contacts
	Slide 42: Annex
	Slide 43: References
	Slide 44: Field classes common to CTF 1 and CTF 2
	Slide 45: What does CTF 2 do better than CTF 1?
	Slide 46: What does CTF 2 do better than CTF 1?
	Slide 47: Linux Kernel & Community Work
	Slide 48: Linux Kernel & Community Work
	Slide 49: SIDE ABI RFC (libside)

