

InsightAI: Root Cause Analysis in Large Hierarchical Log Files with Private Data Using Large Language Model

Maryam Ekhlasi Dec. 05th, 2024

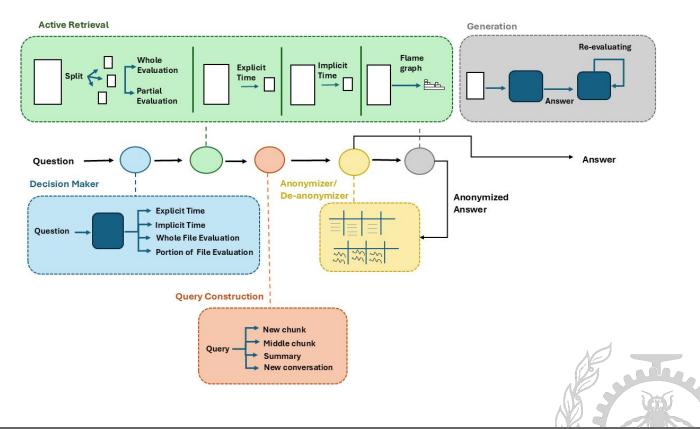
Polytechnique Montreal

DORSAL Laboratory

Motivations

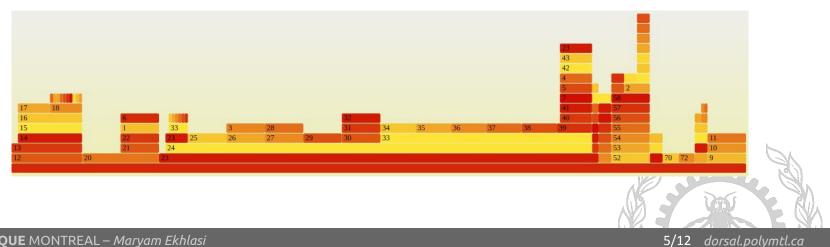
- Root cause analysis can be a time-intensive process.
- Modern software systems generate massive volumes of logs.
- Effective log analysis requires a deep understanding of the software architecture.

2/12 dorsal.polymtl.ca

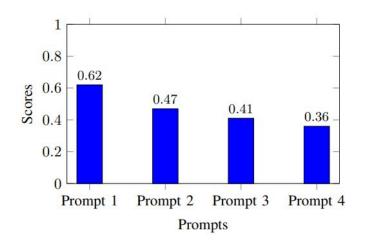


- An adaptive approach to efficiently analyze relevant logs based on user queries, optimizing token usage and reducing costs.
- Anonymizing log data to protect sensitive information while keeping the accuracy of our method.
- Having a chatbot for having an interactive platform between the model and developers.

3/12 dorsal.polymtl.ca


Architecture

4/12 dorsal.polymtl.ca


Active Retrieval

- Timestamp strategy
- Portion of content evaluation
- Full content evaluation
 - Token Count Tracking and Summarization Strategy. Ο
 - Flame-graph-like Strategy. Ο

Query Construction

- Time-Specific Prompts.
- Initial Chunk Evaluation Prompt.
- Extended Evaluation Prompt.
- Self-Assessment Hallucination Mitigation.
- System Prompt (Instructor Prompt).
- Token Limit Management with Summarization.

6/12 dorsal.polymtl.ca

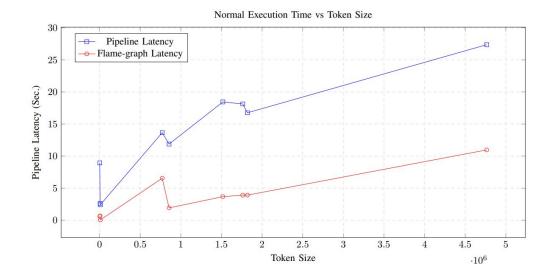
Anonymizer/De-anonymizer

- Ip address
- Function names
- Specific names
- Module names
- Directories

Message content and timestamp

Anonymization	Precision (%)	Recall (%)	F1 Score (%)
RadomValue (Baseline)	86.67	23.64	37.26
FunctionNameRandomValue	100.00	80.00	88.89
FunctionName_RandomValue	100.00	76.36	86.57
FunctionName_RandomValue	0.00	0.00	0.00
RandomValue()	100.00	27.27	42.86
functionNameRandomValue	100.00	27.27	42.86
RandomValue_FunctionName	86.67	20.00	32.47

Generation


- Counting tokens
- Summarize the current conversation
- Initiate a new conversation
- Self assessment strategy

POLYTECHNIQUE MONTREAL – Maryam Ekhlasi

Experimental Evaluation

Name	Total Tokens	Flame-graph Tokens	Pipeline Latency (Sec.)	Flame-graph Latency (Sec.)
Log A	854754	47 347	11.87	1.92
Log B	2179	278	8.94	0.63
Log C	1517318	32772	18.44	3.67
Log D	770 823	141728	13.65	6.55
Log E	8682	1994	2.41	0.04
Log F	1762090	61854	18.13	3.91
Log G	4764844	177248	27.37	10.96
Log H	1819004	16074	16.75	3.91
Log I	6216	261	2.62	0.66

POLYTECHNIQUE MONTREAL – Maryam Ekhlasi

Accomplished

- Implemented Chatbot for user interaction.
- Our flame-graph-like methodology reduces input tokens by 93.61% and processing latency by 77.45%.
- Our anonymization results show an improvement of 138.63% over the
 - baseline.

Full Sear	rch) pre	fix (timestam	p) system1	system2 system	13 (file) (line	function	cnprefix	msg lo
Search	Search	n Search	Search	Search Search	Search (Search	Search	Search	Search Sea
Q		2024-02-06	12:46:43.94931	9 alarm				1452	
Q			12:46:43.95462					1452	
Q			12:46:43.95523					1452	
Q			12:46:43.95654					1452	
Q								1452	
Q			12:46:43.95795					1452	
q			12:46:43.95846					1452	
ď	<190>1		12:46:43.95903			260		1452	
q	<190>1		12:46:43.95956			260		1452	
dd	<190>1 <190>1		12:46:43.98716			260 260		1452 1452	
ďď	<190>1		12:46:43.98780			260		1452	
ď	<190>1		12:46:43.98891			260		1452	
à	<190>1		12:46:43.98944			260		1452	
à	<190>1		12:46:43.98995			260		1452	
Q			12:46:43.99048					1452	
Q			12:46:43.99108					1452	
~	e SDPP	Frequency Stats							
Timelin		Frequency Stats y will be from Tim	InsightAI) nestamp -		To Timestamp -				
Timeline	of your Quer				To Timestamp				
Timeline Context	ofyourQuer ome to I	y will be from Tin			To Timestamp				
Timeline	ofyourQuer ome to I	y will be from Tin			To Timestamp - [
Timeline Context	ofyourQuer ome to I	y will be from Tin			To Timestamp - [
Timeline Context	ofyourQuer ome to I	y will be from Tin			To Timestamp - [
Timeline Context	ofyourQuer ome to I	y will be from Tin			To Timestamp - [
Timeline Context	ofyourQuer ome to I	y will be from Tin			To Timestamp - [
Timeline Context	ofyourQuer ome to I	y will be from Tin] To Timestamp -				
Timeline Context	ofyourQuer ome to I	y will be from Tin			To Timestamp - [
Timeline Context	ofyourQuer ome to I	y will be from Tin] To Timestamp - [
Timeline Context	ofyourQuer ome to I	y will be from Tin			To Timestamp - [
Timeline Context	ofyourQuer ome to I	y will be from Tin			_ To Timestamp - [

10/12 dorsal.polymtl.ca

Lesson Learned

- A larger token limit led to higher latency and cost, but it also made the selected chunks more relevant. This shows a trade-off between performance and cost.
- The flame-graph approach reduces token size and latency, optimizing processing speed and lowering costs.
- Using structured prefixes like 'FunctionName' for anonymized entities improves model accuracy by keeping key details in sensitive data.

Thank you

Email: maryam.ekhlasi@polymtl.ca

12/12 dorsal.polymtl.ca