
Unveiling Method-Level
Performance Trends

An Empirical Analysis of Java Code
Performance Evolution in Open-Source Projects

Kaveh Shahedi, Heng Li
Polytechnique Montréal

Summer/Fall 2024

What is “Performance Evolution”?

2

And of course, in Java

3

Current Works/Research We’re Doing?

4

“Insights on Method-Level Performance Changes”

“Performance-Oriented Software Refactoring”

Upcoming
“Automated Generation of Performance Regression Unit Tests

Using Adaptive Instrumentation and Code Analysis”

Primary components in this work

 JPerfEvo Java Performance Evolution Buddy
The primary pipeline for mining, analysis, and benchmarking

 JIB Java Instrumentation Buddy
A lightweight instrumenting agent for Java

5

Overview

6

Overview

7

1. Clone the project
2. Iterate through its commits
 i. Should have at least one valid
 method-level code change
 ii. Should have JMH module
 iii. Should not be a merge commit
 iv. Should have valid pom.xml
 v. CI build should be successful
3. Extract method-level changes
 -> for before/after the commit
4. Save as Representative Commits

Step 1: Project Initialization and Data Collection

Which projects are we analyzing?

8

Project Commits KLoC Commits with
Method Changes

Commits with
Benchmark

Representative
Commits

Executed
Commits

Collected
Changed
Methods

jetty.project 30,160 339.06 2,472 12,720 2,470 56 124

netty 11,604 216.98 4,241 7,669 4,240 57 97

jdbi 5,709 28.49 1,266 1,919 313 90 136

fastjson2 4,372 178.5 1,726 3,752 1,726 220 615
Chronicle-Core 3,911 13.25 780 3,170 585 2 3
SimpleFlatMapper 3,433 51.79 911 1,969 485 45 68
apm-agent-java 3,066 80.22 891 2,984 889 86 176
zipkin 2,955 23.51 656 2,726 615 46 93
feign 2,063 17.42 351 1,384 229 54 114
protostuff 1,603 42.29 448 1,354 448 4 4
JCTools 1,043 31.48 339 1,042 339 26 52
objenesis 1,049 2.69 107 784 72 12 14
client_java 866 27.38 155 667 154 9 11

I know it sounds weird, but project building
procedure is not an easy task folks…

9

SPECIALLY FOR JAVA

Overview

10

1. Build JMH benchmarks (bef/aft)
 -> if any fails, skip!
2. Check for identical benchmarks
 -> replace with old if not same
 -> if not compatible, use newer
 -> if fails again, skip!
3. Get microbenchmarks coverage
 -> if no coverage, skip!
4. Execute and instrument
 microbenchmarks

Step 2: Benchmarking and Instrumentation

Overview

11

1. With before/after trace data
 i. Mann–Whitney U Test
 to check significance
 ii. Cliff's Delta Effect Size
 to get significance size
2. Indicate performance change
 -> improvement? regression? neutral?
3. (Exclusive) Label code change type
 -> algorithmic? data structure? other?
4. (Exclusive) Analyze the performance trend

Step 3: Performance Change Analysis

This pipeline (JPerfEvo) is submitted to
“International Conference on Mining

Software Repositories (MSR) 2025 - Data
and Tool Showcase Track”

12

RQ1

What Are the Patterns of Performance
Changes in Java Projects Over Time?

13

14

The distribution of performance changes (i.e., effect size)
over time across all projects

15

The distribution of performance changes (i.e., effect size)
over time across all projects.

Performance regressions show slightly larger
effect sizes than improvements, with both

demonstrating increased stability over time

16

The distribution of performance change effect size
categories based on the performance change type

17

The distribution of performance change effect size
categories based on the performance change type

Most significant performance changes
tend to have a small effect size

18

Distribution of code change impacts on
performance across project lifecycle stages

Project Stage
Change Type

Improvement Regression Unchanged

Early 19.20% 21.43% 59.38%

Middle 14.84% 18.13% 67.03%

Late 12.76% 16.87% 70.37%

19

Distribution of code change impacts on
performance across project lifecycle stages

Project Stage
Change Type

Improvement Regression Unchanged

Early 19.20% 21.43% 59.38%

Middle 14.84% 18.13% 67.03%

Late 12.76% 16.87% 70.37%

The evolution across life stages shows a trend
toward increased stability as projects mature

RQ2

What is the Correlation Between Code Changes
and Performance Impacts, and What Defines
Commits with Significant Performance Shifts?

20

21

How each change type contributes to performance
improvements, regressions, and neutral changes

22

The distribution of performance changes (i.e., effect size)
over time across all projects

API/Library Call and Algorithm Change
modifications tend to have the greatest positive

impact on performance, while Exception and
I/O Handling changes contribute the most to

performance regressions

23

Effect size distribution by method change complexity

24

The distribution of performance changes (i.e., effect size)
over time across all projects

While complex changes are indeed riskier,
carefully planned complex modifications may
be more likely to yield significant performance

gains than cause severe degradations

25

Performance change distribution (in percentage)
based on commiter’s experience

Author
Experience

Change Type

Improvement Regression Unchanged

Junior 13.73% 19.41% 66.86%

Mid 13.97% 16.44% 69.59%

Senior 17.22% 17.78% 65.00%

26

Performance change distribution (in percentage)
based on commiter’s experience

Author
Experience

Change Type

Improvement Regression Unchanged

Junior 13.73% 19.41% 66.86%

Mid 13.97% 16.44% 69.59%

Senior 17.22% 17.78% 65.00%

Balanced performance maintenance may be
better achieved through the collaborative work
of mid-level developers' careful approach and

seniors' optimization expertise

RQ3

Are There Significant Differences in
Performance Evolution Patterns Across

Different Domains or Project Sizes?

27

28

Performance change effect size in each project’s domain

29

Performance change effect size in each project’s domain

System Programming and Data Processing
domains demonstrate significantly higher

performance variability

30

Comparison of performance change affected by
project’s size, indicated for each domain

31

Comparison of performance change affected by
project’s size, indicated for each domain

So, small projects need careful handling due to
high variability, medium-sized projects benefit

from stability, and large projects require
proactive measures to prevent regressions.

The complete study is also submitted to
“Can’t say it, it’s double-blind”

32

Java's all grown up—focus on tiny tweaks
and watch out for sneaky regressions!

33

Big algorithm and I/O changes are like juggling
chainsaws—great rewards but great risks!

One size doesn't fit all—tailor your performance
strategy to your project's quirks, and remember:

small projects can cause big surprises!

Thanks!

34

