
Towards Systematic Low-Overhead
Tracing: Control-Flow-Sampling

(CFS) Guided Tracing

Sampling vs. Tracing

Sampling

Tracing

Figure adapted from: Molka, D. (2017). Performance analysis of complex shared memory systems

Lower overhead, less accurate

Higher overhead, more accurate

Use low-overhead sampling to guide high-
precision tracing?

Sampling (like police on patrol) Tracing (like police in action)

I think I need some help

Control-Flow-Sampling (CFS) Guided
Tracing: Intuitions

• Start with statically identifying existing/potential tracepoints (e.g.,
methods or basic blocks)

• Use tracing probability to control overhead budget: statistical tracing
• Use low-overhead control flow sampling to identify worthy-to-trace

and costly-to-trace program units: adjusting tracing probability
• Use high-precision tracing to collect runtime data for important units
• Use overhead budget and overhead monitoring/estimation to control

tracing probability

Statically identify
existing/potential

tracepoints

Allocate tracing
probability for

tracepoints

Enable tracing &
execution

Identify
long/hot/abnormal

exec paths

Adjust tracing
probability for

tracepoints/probes

Dynamically add
new probes

Overhead vs. budget

Control flow
sampling

Control flow analysis
Statically instrument

tracepoints

Static analysis Dynamic analysis Statistical analysis

Control-Flow-Sampling (CFS) Guided
Tracing

Statically determine where to trace
(uncertainty points)
• (High-level) function entry/exit (arguments, returns)
• Basic code blocks (selectively)
• Branch points (conditional statements)
• Loop iterations (performance bottlenecks)
• Error handling (e.g., try/catch blocks)
• Resource allocation (acquiring/releasing critical resources)
• API/RPC returns

To be determined by representative use cases from industry: to discuss

Control flow sampling (hardware or software
based)
• Last branch records (LBRs)

• Recording the last 8-32 branches in model-specific registers (MSRs).
• Nearly zero overhead for recording branches in MSRs.
• We can sample the MSRs to obtain control flow (branches) info.

• Sampling frequency determines overhead.
• Supported by Intel, AMD, and ARM64

• IntelPT or PTWrite Snapshots
• Taken or Not-Taken (TNT) of branches; target address of indirect branches.
• Default IntelPT traces all branches: too much data.

• Good for post-mortem analysis but not for on-the-fly analysis.
• The snapshot option: uses a small buffer to store a snapshot
• Supported by Intel.

• Call stack sampling
• Sampling at the call stack level (less precise)
• No special hardware support needed

To be determined by representative use cases from industry: to discuss

Dynamically identify interesting exec paths to
trace
• Long-running paths

• Increase tracing probability
• Add new probes

• Frequently-executed paths
• Decrease tracing probability (to reduce overhead)
• Increase tracing probability of caller (to find out why frequent)

• Abnormal/rare/ unstable (perf-varying) paths
• Increase tracing probability
• Increase tracing probability of caller and callees

To be determined by representative use cases from industry: to discuss

	Slide 1: Towards Systematic Low-Overhead Tracing: Control-Flow-Sampling (CFS) Guided Tracing
	Slide 2: Sampling vs. Tracing
	Slide 3: Use low-overhead sampling to guide high-precision tracing?
	Slide 4: Control-Flow-Sampling (CFS) Guided Tracing: Intuitions
	Slide 5: Control-Flow-Sampling (CFS) Guided Tracing
	Slide 6: Statically determine where to trace (uncertainty points)
	Slide 7: Control flow sampling (hardware or software based)
	Slide 8: Dynamically identify interesting exec paths to trace

