
AddressMonitor (AMon): Low-overhead 

Spatial and Temporal Memory Safety for C

Farzam Dorostkar

Supervisor: Prof. Michel Dagenais

Co-supervisor: Prof. Heng Li

Polytechnique Montreal

DORSAL Laboratory

Dec. 5th 2024



Polytechnique Montreal – Farzam Dorostkar 2/26

AddressMonitor (AMon): Introduction

• AddressMonitor (AMon) is a dynamic tool designed to detect heap spatial and temporal violations

❑ Out-of-bounds accesses (buffer overflows)

❑ Use-after-frees

❑ Double-frees

❑ Memory leaks

• Currently targets C programs running on X86-64

• Pointer tainting

• Adds untainting code at compile-time

• Designed to have minimal overhead

❑ Compared to AddressSanitizer (ASan): Much lower memory overhead + More precision in 

detecting buffer overflows



Polytechnique Montreal – Farzam Dorostkar 3/26

ASan: High Memory Overhead and 
Limited Overflow Detection



Polytechnique Montreal – Farzam Dorostkar 4/26

ASan: High Memory Overhead

red zone alloc 1 red zone alloc 2 red zoneASan malloc()

fa 00 fa 00 01-07Shadow Memory (Metadata)

Every 8 bytes of application 

memory are mapped to 1 

shadow byte.

Addressable Partially AddressableHeap Red Zone

(Not Addressable)

Red zones and shadow memory are key contributors to ASan's high memory overhead (2x-4x).



Polytechnique Montreal – Farzam Dorostkar 5/26

ASan: Limited Overflow Detection

red zone alloc 1 red zone alloc 2 red zoneASan malloc()

fa 00 fa 00 01-07Shadow Memory (Metadata)

Addressable Partially AddressableHeap Red Zone

(Not Addressable)

Shadow memory encodes a binary indicator (addressable or not) without object-specific 

details, leading to potential false negatives.



Polytechnique Montreal – Farzam Dorostkar 6/26

ASan: Limited Overflow Detection

red zone alloc 1 red zone alloc 2 red zoneASan malloc()

fa 00 fa 00 01-07Shadow Memory (Metadata)

Shadow memory encodes a binary indicator (addressable or not) without object-specific 

details, leading to potential false negatives.

*(alloc1+n)

Detectable



Polytechnique Montreal – Farzam Dorostkar 7/26

ASan: Limited Overflow Detection

red zone alloc 1 red zone alloc 2 red zoneASan malloc()

fa 00 fa 00 01-07Shadow Memory (Metadata)

Shadow memory encodes a binary indicator (addressable or not) without object-specific 

details, leading to potential false negatives.

*(alloc1+m) | m > n

Not Detectable!



Polytechnique Montreal – Farzam Dorostkar 8/26

Pointer Tainting



Polytechnique Montreal – Farzam Dorostkar 9/26

Pointer Tainting

When Allocating Heap Objects

• Assign a unique taint (ID) to each allocated object

• Build and maintain an object table [taint, base address, size, staus]

• On most 64 bits architecture the first 2 bytes are unused

• Embed the taint into the 2 MS bytes of the returned address (pointer tainting)

When Accessing Memory

• Retrieve the taint

• Use the taint to verify the access against the object table

• Unlike shadow-based techniques, pointer tainting provides object-specific analysis.

But...

• Dereferencing a tainted pointer causes segmentation fault!



Polytechnique Montreal – Farzam Dorostkar 10/26

What Distinguishes AMon?



Polytechnique Montreal – Farzam Dorostkar 11/26

What Distinguishes AMon?

AMon instruments code with untainting logic at compile-time.

Similar tools, such as DataWatch, rely on costly dynamic techniques

• Let memory accesses trigger a SIGSEGV signal

• Perform dynamic patching

• Typically also require to re-taint

▪ For instance, when modifying a register containing a tainted pointer, which might be shared 

across multiple memory-accessing instructions.

• Usually used for targeted protection, not full program verification

AMon instruments code at compile-time to call untainting

• No re-tainting logic is required as it operates on IR registers rather than physical registers

• Full program coverage



Polytechnique Montreal – Farzam Dorostkar 12/26

AMon: Implementation
(Runtime Library &
Compile-time Transformation)



Polytechnique Montreal – Farzam Dorostkar 13/26

AMon: Implementation

Runtime Library (libamon.so)

• Intercepts standard heap allocation and de-allocation functions

▪ To add taint to returned pointers, etc.

• Intercepts other standard C functions as well

▪ To untaint possibly tainted arguments

• Maintains the object table

• Defines the verification logic

• Defines environment variables to control the behavior of AMon

▪ Supported object sizes

• It can be either preloaded using LDPRELOAD or added as a dependency using patchelf



Polytechnique Montreal – Farzam Dorostkar 14/26

AMon: Implementation

Compile-time Transformation

Implemented as an LLVM module pass

1. Identifies all IR instructions that perform pointer dereferencing

▪ All Memory Access and Addressing Operations (such as load, store, and cmpxchg)

▪ Memory-related Standard C Library Intrinsics (such as llvm.memcpy and llvm.memset)

2. Untaints the dereferenced pointer in each identified instruction

▪ Extracts the pointer operand

▪ Generates an untainted version of the pointer using the llvm.ptrmask intrinsic

▪ Replaces the pointer in the current instruction with the untainted version using the 

setOperand method

3. Instruments each identified instruction for runtime verification

▪ amon_access(tainted pointer, access size, is_write)

https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html


Polytechnique Montreal – Farzam Dorostkar 15/26

AMon: Implementation

AMon is easy to use.

• Compile your source code to LLVM IR
clang -S -emit-llvm test.c -o test.ll

• Apply the 'amon' LLVM pass to the generated IR
opt -passes='amon' -S test.ll -o test_amon.ll

• Compile the transformed IR to executable
clang test_amon.ll -o test_amon

• Run the executable while preloading libamon.so
LD_PRELOAD=./libamon.so ./test_amon



Polytechnique Montreal – Farzam Dorostkar 16/26

AMon: Implementation

test.c



Polytechnique Montreal – Farzam Dorostkar 17/26

AMon: Implementation

test.c

libamon.so

Taint Base Address Size Call Stack Status

...

0x03ec 0x6231ba38b1b0 4 main:6 Allocated

objtbl

ptr_taint = 0x03ec6231ba38b1b0



Polytechnique Montreal – Farzam Dorostkar 18/26

AMon: Implementation

test.c

Taint Base Address Size Call Stack Status

...

0x03ec 0x6231ba38b1b0 4 main:6 Allocated

objtbl

test.ll

ptr_taint = 0x03ec6231ba38b1b0

Segmentation Fault!



Polytechnique Montreal – Farzam Dorostkar 19/26

AMon: Implementation

Taint Base Address Size Call Stack Status

...

0x03ec 0x6231ba38b1b0 4 main:6 Allocated

objtbl

ptr_taint = 0x03ec6231ba38b1b0

test_amon.ll

Runtime verification against objtbl

Adds untainting code at Compile-time

test.ll

Segmentation Fault!



Polytechnique Montreal – Farzam Dorostkar 20/26

AMon: Implementation

test.c

Taint Base Address Size Call Stack Status

...

0x03ec 0x6231ba38b1b0 4 main:6 Allocated

objtbl

ptr_taint = 0x03ec6231ba38b1b0

test.ll

Segmentation Fault!



Polytechnique Montreal – Farzam Dorostkar 21/26

AMon: Implementation

Taint Base Address Size Call Stack Status

...

0x03ec 0x6231ba38b1b0 4 main:6 Allocated

objtbl

ptr_taint = 0x03ec6231ba38b1b0

test_amon.ll

Adds untainting code at Compile-time

Runtime verification against objtbl

amon_access(0x03ec6231ba38b1b4, 4, false)
AMon detects the out-of-bounds read violation

test.ll

Segmentation Fault!



Polytechnique Montreal – Farzam Dorostkar 22/26

AMon: Implementation

test.c

Taint Base Address Size Call Stack Status

...

0x03ec 0x6231ba38b1b0 4 main:9 Freed

objtbl

ptr_taint = 0x03ec6231ba38b1b0

libamon.so



Polytechnique Montreal – Farzam Dorostkar 23/26

AMon: Implementation

Compile-time Transformation: Optimizations

Not all identified instructions require monitoring

1. Filtering out accesses to stack

▪ Filters out instructions where the pointer operand originates directly or indirectly 

(through pointer arithmetic) from an alloca instruction.

2. Not instrumenting memory accesses that can be analyzed statically (out-of-bounds)

▪ AMon additionally incorporates a degree of static analysis

▪ When both the allocation size and the access size are known at compile time

▪ No instrument (runtime check) needed, but still needed to untaint the pointer

3. If all accesses to a pointer can be analyzed statically, no need to taint it

• For instance, replaces a malloc with a direct __libc_malloc



Polytechnique Montreal – Farzam Dorostkar 24/26

Results &
Conclusion



Polytechnique Montreal – Farzam Dorostkar 25/26

Results

• Three SPEC CPU 2017 benchmarks

• Under ASan and AMon

• Compared to native compilation

Benchmark

Native ASan AMon

Time 

(Sec)

MRSS 

(MB)
Exec. Size Time (x) MRSS (x)

Exec. 

Size
Time (x) MRSS (x)

Exec. 

Size

505.mcf_r 7.8 292 83 KB 1.4 x 2.1 x 11 MB 1.3 x ≈ 1 (1.03) x 120 KB

519.lbm_r 1.3 420 64 KB 2.6 x 1.2 x 11 MB 1.6 x ≈ 1 (1.02) x 92 KB

544.nab_r 1.1 2.6 506 KB 1.4 x 5.5 x 12 MB 1.2 1.3 x 665 KB

557.xz_r 0.7 531 588 KB 1.7 x 1.2 x 12 MB 1.4 ≈ 1 (1.02) x 763 KB



Polytechnique Montreal – Farzam Dorostkar 26/26

Conclusion

• AddressMonitor (AMon): A tool designed to detect heap-based spatial and temporal memory 

access violations in C programs targeting the x86-64 architecture

• Core approach: Leverages pointer tainting and introduces a novel compile-time transformation 

for efficient pointer untainting.

• Compared to ASan: Achieves significantly lower memory overhead, relatively reduced runtime 

overhead, and enhanced precision in identifying buffer overflow vulnerabilities

• Implementation Flexibility: Can be integrated with compilers beyond LLVM



Polytechnique Montreal – Farzam Dorostkar

Thanks!
Questions? Comments?

farzam.dorostkar@polymtl.ca
https://github.com/farzamdorostkar

https://farzamdorostkar.github.io/

https://github.com/farzamdorostkar
https://farzamdorostkar.github.io/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

