
Low-overhead trace collection and profiling
on GPU compute kernels

Sébastien Darche <sebastien.darche at polymtl.ca>

December 5th, 2024

Dorsal - Polytechnique Montréal

1



Introduction

• GPUs have become ubiquitous in many fields, notably HPC and
machine learning

• Multiple programming models have been developed, both low and
high level

• CUDA, HIP, OpenCL
• SYCL, OpenMP, OpenACC

• GPU programming remains a difficult task

2



Motivation

• Tooling is maturing, mostly for profiling from the host point of view
• ROC-profiler
• Intel VTune
• HPCToolkit 1, ...

• Most tools rely on hardware performance counters and/or PC
sampling

• Current work on device instrumentation

• Little consideration for instrumentation noise (runtime overhead,
register pressure, . . .)

1. K. Zhou, L. Adhianto, J. Anderson et al., “Measurement and analysis of GPU-accelerated applications
with HPCToolkit”, Parallel Computing, t. 108, p. 102 837, 2021.

3



Shortcomings of current work

• CUDAAdvisor 2 proposes LLVM-based instrumentation of compute
kernels. PPT-GPU 3 is similar, with dynamic instrumentation.

• little consideration for overhead (costly kernel-wide atomic
operations)

• Overhead ranging from ∼ 10× to 120×

• CUDA Flux 4 introduces Control-Flow Graph (CFG) instrumentation
combined with static analysis

• only one thread is instrumented, does not support divergence
• Overhead ranging from ∼ 1× to 151× (avg. 13.2×)

2. D. Shen, S. L. Song, A. Li et al., “CUDAAdvisor: LLVM-Based Runtime Profiling for Modern GPUs”,
in Proceedings of the 2018 International Symposium on Code Generation and Optimization, 2018.
3. Y. Arafa, A.-H. Badawy, A. ElWazir et al., “Hybrid, scalable, trace-driven performance modeling of
GPGPUs”, in Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, 2021, p. 1-15.
4. L. Braun et H. Fröning, “CUDA Flux: A Lightweight Instruction Profiler for CUDA Applications”, in
2019 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer
Systems, 2019.

4



Baseline method

We propose a method for instrumenting kernel execution on the GPU
with a minimal runtime overhead.

• Relies on a set of LLVM passes for the host and device Intermediate
Representation (IR)

• Multi-stage performance analysis
• Control-flow counters to retrieve the control flow of the program
• Event collection for precise analysis
• Optionally, original kernel for timing data

• Knowledge of the control flow allows for pre-allocation of the buffers

• Deterministic execution is ensured by reverting memory

• Article published in the ACM Transactions on Parallel Computing 5

5. S. Darche et M. R. Dagenais, “Low-Overhead Trace Collection and Profiling on GPU Compute
Kernels”, ACM Trans. Parallel Comput., fév. 2024, Just Accepted, issn : 2329-4949. doi :
10.1145/3649510. adresse : https://doi.org/10.1145/3649510.

5

https://doi.org/10.1145/3649510
https://doi.org/10.1145/3649510


Baseline Results

• Instrumentation tested on the Rodinia 6 benchmark

Average overhead Median overhead
Counters instr. (kernel) 2.00× 1.67×
Tracing instr. (kernel) 1.50× 1.29×
Program execution time 1.60× 1.26×

• Good improvements over state of the art

• Correlation between kernel complexity and overhead

6. S. Che, M. Boyer, J. Meng et al., “Rodinia: A benchmark suite for heterogeneous computing”, in 2009
IEEE International Symposium on Workload Characterization (IISWC), 2009, p. 44-54.

6



Runtime Trace Collection

• First approach works well, but is unweildy in many ways
• Two kernel runs require saving context & input data
• Limited by non-deterministic kernels (parallelism ?)

• "Regular" tracing is possible but has its own set of challenges
• Requires specific tuning for the hardware

• Memory locality
• Allocation granularity

• Many GPU allocation algorithms to explore !

Figure 1 – AMD GCN Compute unit 7

7. Reproduced from AMD GPU Hardware Basics, 2019 Frontier Application Readiness Kick-off Workshop

7



Challenging Scale

Figure 2 – AMD CDNA1 Architecture block diagram 8

8. Reproduced from Introducing AMD CDNA Architecture, 2020 AMD Whitepaper

8



Implementation, Results

• Multiple approaches implemented :
• Single shared buffer in global device memory – no resizing possible,

enqueuing single events relies on heavy use of atomics
• Shared buffer, per CU for improved memory locality
• Global circular buffer but allocated by fixed-size chunks
• Per CU circular buffer, fixed-size allocations

• All with handwritten (GPU) assembly !

• Interesting results, article submitted

9



Data structures

ptr_begin

ptr_curr

ptr_begin

ptr_curr

Figure 3 – hip-global-mem and hip-chunk-allocator data stuctures
representation. Chunk allocation reduces the number of interactions with other
producers

10



Performance

100 101 102 103 104 105

Number of concurrent waves

100

200

300

400

500

600

700

Ev
en

t c
os

t (
clo

ck
 ti

ck
s)

hip-chunk-allocator
hip-cu-chunk-allocator
hip-cu-mem
hip-global-mem
hip-trace

Figure 4 – Event cost (time per event) on a microbenchmark. Performance is
highly dependent on the number of concurrent wavefronts

11



Results

• Instrumentation tested on the HeCBench 9 benchmark. Overhead is
reported as the slowdown factor between the traced kernel execution
time and the original, uninstrumented kernel.

mean median

hip-trace 2.07× 1.50×
4 × padded hip-trace 2.18× 1.58×

hip-global-mem 3.73× 1.96×
hip-cu-mem 2.47× 1.60×
hip-chunk-allocator 1.79× 1.33×
hip-cu-chunk-allocator 1.77× 1.32×

9. Z. Jin et J. S. Vetter, “A Benchmark Suite for Improving Performance Portability of the SYCL
Programming Model”, in 2023 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), IEEE, 2023, p. 325-327.

12



Hardware limitations

• Memory synchronization between host and device is only allowed at
kernel boundaries (officially)

• It could work consistently for a page, but scalar cache would have to
be flushed from the kernel (costly)

• Synchronized memory (PCIe atomics) is slow, but could be used to
mark a buffer as complete

• APU shared memory is promising (MI300A)

• Event output is still very high

13



Future work

• In the process of migrating integration passes to the compiler
backend to reduce optimization (and register allocation) interference

• A lot of tracing data is redundant - this could be improved through
better static analysis

• Intrinsics to allow the programmer to insert custom tracepoints

14



Scalar vs Vector CFG

beginstart for.cond if.cond

if.if

if.else

for.clean

end

15



Conclusion and future work

• Good results for online tracing

• Picking up interest from partners

• Currently exploring better integration within the compiler and
improving static analysis

• Available freely on Github, feedback and/or use cases are more than
welcome

16


