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Last six months
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Babeltrace 2.1 – Moving towards CTF 2
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Babeltrace 2.1 – Add reading and producing CTF 2 traces

• Release: rc-1 within the next few weeks!

LTTng 2.15 – Producing CTF 2 traces

• Release: TBD (aiming for Q4 2025)



What is CTF 2 ?

6DORSAL Progress Meeting – December 2024

The Common Trace Format (CTF) is:

• A binary trace format
• Fast to write

• Flexible

CTF 2 is a major revision of CTF 1, bringing many improvements.



Field classes common to CTF 1 and CTF 2
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Field class CTF 1.8 CTF 2

Fixed-length integer

UTF-8 string

Floating point number

Fixed-length array

Dynamic-length array

Structure

Variant



What does CTF 2 do better than CTF 1?
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CTF 1.8 CTF 2

Metadata format TSDL (custom DSL)
• Non-trivial to parse.

JSON text sequences
• Widely used standard format 

with pre-existing parser libraries 
in various languages.

Augment events and fields with 
user-defined metadata

🗙  
• Associate user-defined name to 

a value.
• Used to tailor analysis or pretty 

printing of trace data.



What does CTF 2 do better than CTF 1?
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Field class CTF 1.8 CTF 2

BLOB 🗙
• Record opaque binary blobs
• IANA media type attribute

Optional 🗙

LEB128 variable length integer 🗙
• Values > 64-bit range
• Common need in scientific computing

UTF-16 and UTF-32 string character 
encoding

🗙
• Native string encoding on some platforms
• E.g. Windows, Java VM

Fixed-length bit map 🗙
• Associate names to specific bits in a bitmap
• Useful to represent flags

Boolean 🗙



Supercomputer Tracing
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El Capitan Supercomputer – Lawrence Livermore National Lab

• Instrumentation of necessary libraries (e.g. MPI)

• Integration with existing AMD tooling (ROCm)  

Aurora Supercomputer – Argonne National Lab

• Enable on the fly analysis of massive amounts of trace data

• Via Babeltrace performance optimizations, limited-size trace 
footprint



Linux Kernel & Community Work
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Laying the foundation to...

Reduce userspace tracer CPU and memory overhead 
• Reduce CPU execution constraints by replacing hardware atomic 

instructions with kernel-managed software transactions
• Bound memory allocation to max number of concurrently running 

threads (rather than allocate for each CPU)

Enable kernel tracer to have previously unavailable data
• Handle page faults while tracing system calls 



User Interviews

12DORSAL Progress Meeting – December 2024



User Interviews
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Develop active connections with tracing users to...

• Shorten feedback loops
• Improve feedback accuracy

The aim is to deliver more impact in less time.



User Interviews
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Troubleshooters
Feature
Developers

Tool
Developers

6/10
Offered (unsolicited!) to give input again 



Upcoming* Work

DORSAL Progress Meeting – December 2024 15



Core Projects
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Babeltrace

• Reading and producing CTF 2 traces (2.1, next few weeks!)

LTTng

• Trace Hit Counters (upcoming 2.14, 2025)

• Producing CTF 2 traces (upcoming 2.15, TBD)



Important Problems
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High memory usage of tracing buffers

• Buffers currently allocated per CPU and per container

• Quickly not viable in a typical containerized environment

Wasting time processing incomplete traces

• Know as early as possible if the information you want was not 
captured, so you can adjust and retry

• Maximize detail without overwhelming the system



Upcoming* Work
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Memory Usage

Supercomputer 
Tracing

LTTng 2.14
LTTng 2.15

User 
Contact



Questions ?

• Links:
• https://www.efficios.com

• https://lttng.org

• https://babeltrace.org

• https://diamon.org

• https://barectf.org
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https://www.efficios.com
https://lttng.org
https://babeltrace.org
https://diamon.org
https://barectf.org


Annex
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References

• Common Trace Format 2 Specification

https://diamon.org/ctf

• libside repository

https://github.com/efficios/libside
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https://diamon.org/ctf
https://github.com/efficios/libside


SIDE ABI RFC (libside)

• The SIDE ABI is currently at RFC stage, aiming to create a specification.
• https://github.com/efficios/libside/blob/master/doc/rfc-side-abi.txt

• Runtime/language agnostic,

• Supports multiple concurrent tracers,

• Instrumentation is not specific to a tracer,
• No need to rebuild applications if using a different tracer,

• Instrumentation can be either static or dynamic,

• Supports complex/nested types,

• Supports both static and dynamic types,

• Libside is a C/C++ reference implementation for the System V ELF ABI.
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https://github.com/efficios/libside/blob/master/doc/rfc-side-abi.txt
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