
LTTng and
Related Projects

Update
DORSAL Progress Meeting

December 2024

Outline

• Last Six Months
• Upcoming Work

2DORSAL Progress Meeting – December 2024

Last six months
In the

DORSAL Progress Meeting – December 2024 3

R&D Activities
in the last six
months

4DORSAL Progress Meeting – December 2024

Babeltrace 2.1

Supercomputer
Tracing

User
Interviews

Linux
Kernel

Babeltrace 2.1 – Moving towards CTF 2

5DORSAL Progress Meeting – December 2024

Babeltrace 2.1 – Add reading and producing CTF 2 traces

• Release: rc-1 within the next few weeks!

LTTng 2.15 – Producing CTF 2 traces

• Release: TBD (aiming for Q4 2025)

What is CTF 2 ?

6DORSAL Progress Meeting – December 2024

The Common Trace Format (CTF) is:

• A binary trace format
• Fast to write

• Flexible

CTF 2 is a major revision of CTF 1, bringing many improvements.

Field classes common to CTF 1 and CTF 2

7DORSAL Progress Meeting – December 2024

Field class CTF 1.8 CTF 2

Fixed-length integer

UTF-8 string

Floating point number

Fixed-length array

Dynamic-length array

Structure

Variant

What does CTF 2 do better than CTF 1?

8DORSAL Progress Meeting – December 2024

CTF 1.8 CTF 2

Metadata format TSDL (custom DSL)
• Non-trivial to parse.

JSON text sequences
• Widely used standard format

with pre-existing parser libraries
in various languages.

Augment events and fields with
user-defined metadata

🗙
• Associate user-defined name to

a value.
• Used to tailor analysis or pretty

printing of trace data.

What does CTF 2 do better than CTF 1?

9DORSAL Progress Meeting – December 2024

Field class CTF 1.8 CTF 2

BLOB 🗙
• Record opaque binary blobs
• IANA media type attribute

Optional 🗙

LEB128 variable length integer 🗙
• Values > 64-bit range
• Common need in scientific computing

UTF-16 and UTF-32 string character
encoding

🗙
• Native string encoding on some platforms
• E.g. Windows, Java VM

Fixed-length bit map 🗙
• Associate names to specific bits in a bitmap
• Useful to represent flags

Boolean 🗙

Supercomputer Tracing

10DORSAL Progress Meeting – December 2024

El Capitan Supercomputer – Lawrence Livermore National Lab

• Instrumentation of necessary libraries (e.g. MPI)

• Integration with existing AMD tooling (ROCm)

Aurora Supercomputer – Argonne National Lab

• Enable on the fly analysis of massive amounts of trace data

• Via Babeltrace performance optimizations, limited-size trace
footprint

Linux Kernel & Community Work

11DORSAL Progress Meeting – December 2024

Laying the foundation to...

Reduce userspace tracer CPU and memory overhead
• Reduce CPU execution constraints by replacing hardware atomic

instructions with kernel-managed software transactions
• Bound memory allocation to max number of concurrently running

threads (rather than allocate for each CPU)

Enable kernel tracer to have previously unavailable data
• Handle page faults while tracing system calls

User Interviews

12DORSAL Progress Meeting – December 2024

User Interviews

13DORSAL Progress Meeting – December 2024

Develop active connections with tracing users to...

• Shorten feedback loops
• Improve feedback accuracy

The aim is to deliver more impact in less time.

User Interviews

14DORSAL Progress Meeting – December 2024

Troubleshooters
Feature
Developers

Tool
Developers

6/10
Offered (unsolicited!) to give input again

Upcoming* Work

DORSAL Progress Meeting – December 2024 15

Core Projects

16DORSAL Progress Meeting – December 2024

Babeltrace

• Reading and producing CTF 2 traces (2.1, next few weeks!)

LTTng

• Trace Hit Counters (upcoming 2.14, 2025)

• Producing CTF 2 traces (upcoming 2.15, TBD)

Important Problems

17DORSAL Progress Meeting – December 2024

High memory usage of tracing buffers

• Buffers currently allocated per CPU and per container

• Quickly not viable in a typical containerized environment

Wasting time processing incomplete traces

• Know as early as possible if the information you want was not
captured, so you can adjust and retry

• Maximize detail without overwhelming the system

Upcoming* Work

18DORSAL Progress Meeting – December 2024

Memory Usage

Supercomputer
Tracing

LTTng 2.14
LTTng 2.15

User
Contact

Questions ?

• Links:
• https://www.efficios.com

• https://lttng.org

• https://babeltrace.org

• https://diamon.org

• https://barectf.org

19DORSAL Progress Meeting – December 2024

https://www.efficios.com
https://lttng.org
https://babeltrace.org
https://diamon.org
https://barectf.org

Annex

DORSAL Progress Meeting – December 2024 20

References

• Common Trace Format 2 Specification

https://diamon.org/ctf

• libside repository

https://github.com/efficios/libside

21DORSAL Progress Meeting – December 2024

https://diamon.org/ctf
https://github.com/efficios/libside

SIDE ABI RFC (libside)

• The SIDE ABI is currently at RFC stage, aiming to create a specification.
• https://github.com/efficios/libside/blob/master/doc/rfc-side-abi.txt

• Runtime/language agnostic,

• Supports multiple concurrent tracers,

• Instrumentation is not specific to a tracer,
• No need to rebuild applications if using a different tracer,

• Instrumentation can be either static or dynamic,

• Supports complex/nested types,

• Supports both static and dynamic types,

• Libside is a C/C++ reference implementation for the System V ELF ABI.

22DORSAL Progress Meeting – December 2024

https://github.com/efficios/libside/blob/master/doc/rfc-side-abi.txt

	Slide 1: LTTng and Related Projects Update
	Slide 2: Outline
	Slide 3: Last six months
	Slide 4: R&D Activities in the last six months
	Slide 5: Babeltrace 2.1 – Moving towards CTF 2
	Slide 6: What is CTF 2 ?
	Slide 7: Field classes common to CTF 1 and CTF 2
	Slide 8: What does CTF 2 do better than CTF 1?
	Slide 9: What does CTF 2 do better than CTF 1?
	Slide 10: Supercomputer Tracing
	Slide 11: Linux Kernel & Community Work
	Slide 12: User Interviews
	Slide 13: User Interviews
	Slide 14: User Interviews
	Slide 15: Upcoming* Work
	Slide 16: Core Projects
	Slide 17: Important Problems
	Slide 18: Upcoming* Work
	Slide 19: Questions ?
	Slide 20: Annex
	Slide 21: References
	Slide 22: SIDE ABI RFC (libside)

