
Low-overhead trace collection and profiling
on GPU compute kernels

Sébastien Darche <sebastien.darche at polymtl.ca>

December 7th, 2023

Dorsal - Polytechnique Montréal

1



Introduction

• GPUs have become ubiquitous in many fields, notably HPC and
machine learning

• Multiple programming models have been developped, both low and
high level

• CUDA, HIP, OpenCL
• SYCL, OpenMP, OpenACC

• GPU programming remains a difficult task

2



Motivation

• Tooling is maturing, mostly for profiling from the host point of view
• ROC-profiler
• Intel VTune
• HPCToolkit 1, ...

• Most tools rely on hardware performance counters and/or PC
sampling

• Current work on device instrumentation

• Little consideration for instrumentation noise (runtime overhead,
register pressure, . . .)

1. K. Zhou, L. Adhianto, J. Anderson et al., “Measurement and analysis of GPU-accelerated applications
with HPCToolkit”, Parallel Computing, t. 108, p. 102 837, 2021.

3



Shortcomings of current work

• CUDAAdvisor 2 proposes LLVM-based instrumentation of compute
kernels. PPT-GPU 3 is similar, with dynamic instrumentation.

• little consideration for overhead (costly kernel-wide atomic
operations)

• Overhead ranging from ∼ 10× to 120×

• CUDA Flux 4 introduces Control-Flow Graph (CFG) instrumentation
combined with static analysis

• only one thread is instrumented, does not support divergence
• Overhead ranging from ∼ 1× to 151× (avg. 13.2×)

2. D. Shen, S. L. Song, A. Li et al., “CUDAAdvisor: LLVM-Based Runtime Profiling for Modern GPUs”,
in Proceedings of the 2018 International Symposium on Code Generation and Optimization, 2018.
3. Y. Arafa, A.-H. Badawy, A. ElWazir et al., “Hybrid, scalable, trace-driven performance modeling of
GPGPUs”, in Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, 2021, p. 1-15.
4. L. Braun et H. Fröning, “CUDA Flux: A Lightweight Instruction Profiler for CUDA Applications”, in
2019 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer
Systems, 2019.

4



Method

We propose a method for instrumenting kernel execution on the GPU
with a minimal runtime overhead.

• Relies on a set of LLVM passes for the host and device Intermediate
Representation (IR)

• Multi-stage performance analysis
• Control-flow counters to retrieve the control flow of the program
• Event collection for precise analysis
• Optionally, original kernel for timing data

• Knowledge of the control flow allows for pre-allocation of the buffers

• Deterministic execution is ensured by reverting memory

5



What’s new

• Deep dive into GPU architecture, new instrumentation written
directly in assembly

• Vast improvements over previous versions, especially for large kernels

• Revised article submitted – awaiting reviews

• Exploring runtime trace collection on GPU

Figure 1 – AMD GCN Compute unit 5

5. Reproduced from AMD GPU Hardware Basics, 2019 Frontier Application Readiness Kick-off Workshop

6



Results

• Instrumentation tested on the Rodinia 6 benchmark

Average overhead Median overhead
Counters instr. (kernel) 2.00× 1.67×
Tracing instr. (kernel) 1.50× 1.29×
Program execution time 1.60× 1.26×

• Good improvements over state of the art

• Correlation between kernel complexity and overhead

6. S. Che, M. Boyer, J. Meng et al., “Rodinia: A benchmark suite for heterogeneous computing”, in 2009
IEEE International Symposium on Workload Characterization (IISWC), 2009, p. 44-54.

7



Runtime trace collection

• Implemented a baseline, "naive", trace collection scheme
• Single shared buffer in global device memory – no resizing possible
• Enqueuing relies on heavy use of atomics

• Requires specific tuning for the hardware
• Memory locality
• Allocation granularity

• Many GPU allocation algorithms to explore !

8



State system analysis

Which basic block is executed by each wavefront. Kernel performs a
lookup on an open-addressing hashmap.

9



Precise timing information

103 104

BBlock 3 duration (ns)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
De

ns
ity

Geometry
512 threads / block
256 threads / block
128 threads / block
64 threads / block

Identify timing information in a "hotspot" of the code. How long the
lookup takes, as a function of block geometry.

10



Future tracks

• Hardware optimized tracing and improved host–device interactions
for memory management

• Better compiler integration through intrinsics

• Improved static analysis to reduce instrumentation

11



Conclusion and future work

• Encouraging results and feedback

• Exploring improvements on the method through memory
management on the device

• Exciting new tracks and partnerships

• Available freely on Github, feedback and/or use cases are more than
welcome

12


