

Low-overhead trace collection and profiling on GPU compute kernels

Sébastien Darche <sebastien.darche at polymtl.ca> December 7th, 2023

Dorsal - Polytechnique Montréal

- GPUs have become ubiquitous in many fields, notably HPC and machine learning
- Multiple programming models have been developped, both low and high level
 - CUDA, HIP, OpenCL
 - SYCL, OpenMP, OpenACC
- GPU programming remains a difficult task

- Tooling is maturing, mostly for profiling from the host point of view
 - ROC-profiler
 - Intel VTune
 - HPCToolkit¹, ...
- Most tools rely on hardware performance counters and/or PC sampling
- Current work on device instrumentation
- Little consideration for instrumentation noise (runtime overhead, register pressure, ...)

^{1.} K. Zhou, L. Adhianto, J. Anderson et al., "Measurement and analysis of GPU-accelerated applications with HPCToolkit", *Parallel Computing*, t. 108, p. 102837, 2021.

Shortcomings of current work

- CUDAAdvisor² proposes LLVM-based instrumentation of compute kernels. PPT-GPU³ is similar, with dynamic instrumentation.
 - little consideration for overhead (costly kernel-wide atomic operations)
 - + Overhead ranging from $\sim 10 \times$ to $120 \times$
- CUDA Flux⁴ introduces Control-Flow Graph (CFG) instrumentation combined with static analysis
 - only one thread is instrumented, does not support divergence
 - Overhead ranging from $\sim 1 imes$ to 151 imes (avg. 13.2 imes)

^{2.} D. Shen, S. L. Song, A. Li et al., "CUDAAdvisor: LLVM-Based Runtime Profiling for Modern GPUs", in Proceedings of the 2018 International Symposium on Code Generation and Optimization, 2018.

^{3.} Y. Arafa, A.-H. Badawy, A. ElWazir et al., "Hybrid, scalable, trace-driven performance modeling of GPGPUs", in *Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis,* 2021, p. 1-15.

^{4.} L. Braun et H. Fröning, "CUDA Flux: A Lightweight Instruction Profiler for CUDA Applications", in 2019 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems, 2019.

We propose a method for instrumenting kernel execution on the GPU with a minimal runtime overhead.

- Relies on a set of LLVM passes for the host and device Intermediate Representation (IR)
- Multi-stage performance analysis
 - Control-flow counters to retrieve the control flow of the program
 - Event collection for precise analysis
 - Optionally, original kernel for timing data
- Knowledge of the control flow allows for pre-allocation of the buffers
- Deterministic execution is ensured by reverting memory

- Deep dive into GPU architecture, new instrumentation written directly in assembly
- Vast improvements over previous versions, especially for large kernels
- Revised article submitted awaiting reviews
- Exploring runtime trace collection on GPU

Figure 1 – AMD GCN Compute unit ⁵

^{5.} Reproduced from AMD GPU Hardware Basics, 2019 Frontier Application Readiness Kick-off Workshop

• Instrumentation tested on the Rodinia⁶ benchmark

	Average overhead	Median overhead
Counters instr. (kernel)	2.00×	1.67 imes
Tracing instr. (kernel)	1.50 imes	1.29 imes
Program execution time	1.60 imes	1.26×

- Good improvements over state of the art
- Correlation between kernel complexity and overhead

^{6.} S. Che, M. Boyer, J. Meng et al., "Rodinia: A benchmark suite for heterogeneous computing", in 2009 IEEE International Symposium on Workload Characterization (IISWC), 2009, p. 44-54.

- Implemented a baseline, "naive", trace collection scheme
 - Single shared buffer in global device memory no resizing possible
 - Enqueuing relies on heavy use of atomics
- Requires specific tuning for the hardware
 - Memory locality
 - Allocation granularity
- Many GPU allocation algorithms to explore !

State system analysis

🗄 State System Explorer 🗴 🖬 Descriptive Statistics 🖷 GPU Cumulated waves view 🔳 GPU Occupancy view 🖷 Progress										
State System / Attribute	19:28:44.999400	19:28:44.999410	19:28:44.999420	19:28:44.999430	19:28:44.999440	19:28:44.999450	19:28:44.999460	19:28:44.999470	19:28:44.999480	19:28:44.999490
v org.eclipse.tracecompass.incuba										
▼ waves										
								0x8		
								0x6		
								0x8		
								0x4		
				0x5						
						0.09				
								0x5		
					0xS					
	0x8	0x5 000 000 000 000							0×	9
		0x9								
			0x5							
							0.9			
								0x0		
								0×8		
								0x0		
								0x4		
								0x4		
							0x5			
								0x4		
		0xa			X41					0.9
								0x9		
								0x4		
								0x8		

Which basic block is executed by each wavefront. Kernel performs a lookup on an open-addressing hashmap.

Precise timing information

Identify timing information in a "hotspot" of the code. How long the lookup takes, as a function of block geometry.

- Hardware optimized tracing and improved host-device interactions for memory management
- Better compiler integration through intrinsics
- Improved static analysis to reduce instrumentation

Conclusion and future work

- Encouraging results and feedback
- Exploring improvements on the method through memory management on the device
- Exciting new tracks and partnerships
- Available freely on Github, feedback and/or use cases are more than welcome

