
Performance Debugging in In-Memory Data
Store

(A Microservice Context)

Progress Report Meeting

 Hervé KABAMBA

 PhD Candidate

Supervisor: Michel Dagenais

December 07, 2023

 Polytechnique Montréal

Département de Génie Informatique et Génie Logiciel

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Agenda

2

1. Introduction

2. Our Approach

3. Some results

4. Conclusion

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction

3

 In-Memory Data Store

- Bring storage dimension in microservices architectures

- High availability of data

- Low latency access to data

- Databases, Messaging and caching services

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction(2)

7POLYTECHNIQUE MONTREAL – Hervé Kabamba 4

Redis (Remote Dictionary Server)

An in-memory data structure used as:

- Cache

- Pub/sub

- Database

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction(3)

5

CONTEXT

- In microservice architecture in-memory data stores are generally part of
 the infrastructure

- They enable fast access to data

- Persistence services can be implemented

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction (4)

6

Problem:

As part of of the infrastructure, performance issues can be localized inside Redis

Distributed tracing approaches mostly target telemetry data collection from
implemented microservices

In such a context, the in-memory data store appears as a black-box

Precise performance debugging approaches need to address the in-memory data
store dimension

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Our Approach

7

Building a high level model

- Redis, as an In-memory data system, has a built-in asynchronous mechanism,
 enabling the handling of massive amount of events

- We propose a high level model that can be generalized to other such systems, for
 debugging performance issues

- The model is based on the identification of key performance influencers, to capture
 the semantic of the system operation

- Populating the model enables the understanding of system operations, and the
 visualization of Redis performance impacting actors.

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Our approach(2)

8

Model description

-The model is built on 3 levels

- The topmost level represents the Redis identified key performance
 influencers

- The second level represents the resources attached to the topmost actors

- The lower level captures the statuses of each resource

The model is constructed based on the SHT (State History Tree), a highly
efficient data structure featured by Trace Compass

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Our Approach(3)

9

High Level Model

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Our Approach(4)

10

Framework architecture

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Results

11

- In a Redis cluster, a publisher can send messages to subscribers

- Before the subscribers consume the message, the latter may traverse
some cluster nodes.

- Performance issues may happen on the cluster during the sending of the
message.

- Debugging such problems need efficient analyses and understanding the
global system functioning

- We can leverage our model to pinpoint such performance issues when they
appear

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Results(2)

12

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Results(3)

13

- Unresolved bug described on GitHub, pertains to the context of ”publish”
 requests sent to a Redis infrastructure consisting of a cluster.

- The amount of data sent through the cluster is 10 times bigger than the original data
volume

- Our experiments reveal a bug within the GOSIP protocol used by Redis for node
communication.

- First, the data is encapsulated into a structure containing a huge payload; second, it is
broadcasted to all the nodes connected to the cluster. These operations generate a
significant overhead on the system.

Use case 2

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Results(3)

14

Appears when Redis is compiled with TLS support and thread I/O reading activated.

- When a big item is sent and arrives in Redis in small parts, Redis only reads the needed
amount of data.

- The connection object will be stored in a list for SSL I/O reading

- During the reading cycles, The SSL handler will read all data in the buffer until no data
remains.

- In this case, if an event such as closing the connection happens, the latter is freed and
becomes reusable, and a new reading event is triggered.

- Since the reading I/O thread was activated, the same connection is added again to the list
of SSL I/O readings.

- Then, the SSL handler will be called to check if there is data remaining in the buffer.

- Since no data remains, the thread will double-free the connection and lead to a crash of
Redis.

Use case 3 (SSL data reading bug)

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Results(4)

15

Step by step bug visualisation

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Conclusion

16

- The obtained results were made possible by leveraging our presented model

- The model abstracts the asynchronous mechanism of Redis and helps
comprehending its functioning

- The model can be extended and applied to other such systems (RabitMQ,
 ZeroMQ, MemCached, etc.)

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Thank you

17

