Performance Debugging in In-Memory Data
Store
(A Microservice Context)

Progress Report Meeting

Hervé KABAMBA

PhD Candidate

Supervisor: Michel Dagenais

December 07, 2023

Polytechnique Montréal

Département de Génie Informatique et Génie Logiciel

Agenda

1. Introduction

2. Our Approach

3. Some results

4. Conclusion

POLYTECHNIQUE MONTREAL - Hervé Kabamba 2

Introduction

In-Memory Data Store

- Bring storage dimension in microservices architectures
- High availability of data
- Low latency access to data

- Databases, Messaging and caching services

POLYTECHNIQUE MONTREAL - Hervé Kabamba 3

Introduction(2)

Redis (Remote Dictionary Server)

An in-memory data structure used as:
- Cache

- Pub/sub

- Database

POLYTECHNIQUE MONTREAL - Hervé Kabamba 4

Introduction(3)

CONTEXT

- In microservice architecture in-memory data stores are generally part of
the infrastructure

- They enable fast access to data

- Persistence services can be implemented

POLYTECHNIQUE MONTREAL - Hervé Kabamba 5

Introduction (4)

Problem:

As part of of the infrastructure, performance issues can be localized inside Redis

Distributed tracing approaches mostly target telemetry data collection from
implemented microservices

In such a context, the in-memory data store appears as a black-box

Precise performance debugging approaches need to address the in-memory data
store dimension

POLYTECHNIQUE MONTREAL - Hervé Kabamba 6

Our Approach

Building a high level model

- Redis, as an In-memory data system, has a built-in asynchronous mechanism,
enabling the handling of massive amount of events

- We propose a high level model that can be generalized to other such systems, for
debugging performance issues

- The model is based on the identification of key performance influencers, to capture
the semantic of the system operation

- Populating the model enables the understanding of system operations, and the
visualization of Redis performance impacting actors.

POLYTECHNIQUE MONTREAL - Hervé Kabamba 7

Our approach(2)

Model description

-The model is built on 3 levels

- The topmost level represents the Redis identified key performance
iInfluencers

- The second level represents the resources attached to the topmost actors
- The lower level captures the statuses of each resource

The model is constructed based on the SHT (State History Tree), a highly
efficient data structure featured by Trace Compass

POLYTECHNIQUE MONTREAL - Hervé Kabamba 8

Our Approach(3)

High Level Model

—» Memory State

_Connexions 3 Data struct. —————————p Siate

- % Object ——» Siate

Héf—h- Data Struct, ———» Siate

- A
_. Requests ———————p Connexion —————» State

. N Type —————» Slate

~ ———» \olume —p» State

it Typg ——» Siate

— % Hequest ——7F —» State

Threads

e Operation —————» State

Event-loop ————» rations ————» State
p

POLYTECHNIQUE MONTREAL - Hervé Kabamba 9

Our Approach(4)

Cluster Nodel

Master

LTTng

Cluster Noded

Replica

POLYTECHNIQUE MONTREAL - Hervé Kabamba

Framework architecture

Cluster Node2

Master

LTTng

Cluster Node5

Replica

Cluster Node3

Master

- — — — L'lTrg —_—

Cluster Node6

Replica

Trace Compass

lb[Visualisation tools }

10

Results

- In a Redis cluster, a publisher can send messages to subscribers

- Before the subscribers consume the message, the latter may traverse
some cluster nodes.

- Performance issues may happen on the cluster during the sending of the
message.

- Debugging such problems need efficient analyses and understanding the
global system functioning

- We can leverage our model to pinpoint such performance issues when they
appear

POLYTECHNIQUE MONTREAL - Hervé Kabamba 11

—
Results(2)

redis1/ust/uid/0/64-bit(6) 16:44:45.823218251 channel0 4 4 redis:insert_clientwrite_queue fd=16, id=0x4, context.packet_seq_num=31, context.cpu_id=4, context._procname=redis-server, context._
redis1/ust/uid/0/64-bit(6) 16:44:45.823219367 channel0 4 4 redis:call_command_end fd=16, name=publish, context.packet _seq_num=31, context.cpu_id=4, context. procname=redis-server, ¢
redis1/ust/uid/0/64-bit(6) 16:44:45.823220938 channelo 4 4 redis:end_process_command fd=16, id=0x4, context.packet_seq_num=31, context.cpu_id=4, context._procname=redis-server, context._
redis1/ust/uid/0/64-bit(6) 16:44:45.823223 118 channel0 4 4 redis:end_read_client_query fd=16, nread=349, id=0x4, context.packet_seq_num=31, context.cpu_id=4, context._procname=redis-servi
redis1/ust/uid/0/64-bit(6) 16:44:45.823 224147 channel0 4 4 redis:before_sleep start context.packet_seq_num=31, context.cpu_id=4, context._procname=redis-server, context._pthread id=1:
redis1/ust/uid/0/64-bit(6) 16:44:45.823 224974 channel0 4 redis:handleClientswithPendingReadsUsingThreads_start context.packet seq num=31, context.cpu_id=4, context. procname=redis-server, context. pthread id=1:
Il Histogram [Properties L[l Bookmarks [Redis Netflow View X i= State System Explorer [Redis Data Volume [Redis Events Latency TE BEA R vy o8 E He § =8
16:44:45.823185 16:44:45.823190 16:44:45.823195 16:44:45.823200 16:44:45.823205 16:44:45.823210 16:44:45.823215 . 16:44:45.823220 16:44:45.823225
-1581178730 . READAENT T D e e N L1 e TN 2
-1653486652
-1538493397
[l Histogram [Properties L[l Bookmarks [Redis Netflow View X i= State System Explorer [Redis Data Volume [T Redis Events Latency = = A & > ¢4 HE F~ B =0
16:44:30.420300 16:44:30.420400 16:44:30.420500 16:44:30.420600 16:44:30.420700 16:44:30.420800 16:44:30.420900

-1581178730 -‘ﬁn - v) bw...ADI—DI\K. o ...
1653486692 B0 WRIT.. W...

p..-wm...—Tﬂ > —:I-=!l_

-1538493397
i= trace £= tracel i= trace3 i= trace4_no_publish = lttng_traces 1 Redis Netflow View x :i= trace5_new_publish = 64-bit = i= =3 5 - i o\ S =~ g = 8
16:44:30.419500 16:44:30.420000 16:§4:30.420500 16:44:30.421000 16:44:30.421500 16:44:30.422000
-1581178730 READ CLIENT - [F— »\|
-1653486692] 1}
-1538493397 I 1
—
(I Histogram [Properties L[l Bookmarks :i= State System Explorer [Redis Data Volume < [Redis Events Latency fay & S =~ g = 8
sok -
Name
Incoming_v
a0k
o 30 k-
>
20k -
10k -'_,—,_,_'
— s
o
16:44:30.419500 16:44:30.420000 16:&4:30.420500 16:44:30.421000 16:44:30.421500 16:44:30.422000

POLYTECHNIQUE MONTREAL - Hervé Kabamba 12

—
Results(3)

Use case 2

- Unresolved bug described on GitHub, pertains to the context of "publish”
requests sent to a Redis infrastructure consisting of a cluster.

- The amount of data sent through the cluster is 10 times bigger than the original data
volume

- Our experiments reveal a bug within the GOSIP protocol used by Redis for node
communication.

- First, the data is encapsulated into a structure containing a huge payload; second, it is
broadcasted to all the nodes connected to the cluster. These operations generate a
significant overhead on the system.

60k
Name
Incoming_volt 4 |

+ bus_volume

40k

4
a 30k
>

llii Histogram = Properties L[l Bookmarks [Redis Netflow View = State System Explorer [Redis Data Volume x [Redis Events Latency e e #F~ § =0
20k
10k

\i ‘
[1 | |
| !
| i ‘
|
’_I__/T\L/_\!HUHV I | W L | N At)

T T T T T T T — T T T T T T
16:44:10 16:44:15 16:44:20 16:44:25 16:44:30 16:44:35 16:44:40 16:44:45 16:44.50 16:44.55 16:45:00 16:45.05 16:45:10 16:45:15

POLYTECHNIQUE MONTREAL - Hervé Kabamba

—
Results(3)

Use case 3 (SSL data reading bug)

Appears when Redis is compiled with TLS support and thread 1/O reading activated.

- When a big item is sent and arrives in Redis in small parts, Redis only reads the needed
amount of data.

- The connection object will be stored in a list for SSL 1/O reading

- During the reading cycles, The SSL handler will read all data in the buffer until no data
remains.

- In this case, if an event such as closing the connection happens, the latter is freed and
becomes reusable, and a new reading event is triggered.

- Since the reading I/O thread was activated, the same connection is added again to the list
of SSL 1/O readings.

- Then, the SSL handler will be called to check if there is data remaining in the buffer.

- Since no data remains, the thread will double-free the connection and lead to a crash of
Redis.

POLYTECHNIQUE MONTREAL - Hervé Kabamba 14

Results(4)

Step by step bug visualisation

> 131

v132
¥ operations
140023548102400
140023689511552 READ READING SSL bytes=8152 READING CONN..]
status REGISTERED
event_loop_states RUNNING TASKS
131 |
¥132 |
¥ operations |
140023548102400 |
140023689511552 READ READING SSL bytes=101 READING...
status
e ooy ates . . —
 mak sne |
» 131 |
vi32 |
¥ operations |
140023548102400 |
140023689511552 READ READING SSL bytes=18
status
event loop_states L ————————— e —————
131
v132
¥ operations
140023548102400
140023689511552 READING S5L bytes=0 READING CONNECTION bytes=-1
status
event_loop_states
» 131 \
Y132 \
¥ operations |
140023548102400
140023689511552 |
status
event_loop_states L RUNNINGTASKRS
» 131 |
v132 |
¥ operations |
140023548102400 | R... |
140023689511552 READ READINGSS...
status

event_loop_states RUNNING TASKS

POLYTECHNIQUE MONTREAL - Hervé Kabamba

Conclusion

- The obtained results were made possible by leveraging our presented model

- The model abstracts the asynchronous mechanism of Redis and helps
comprehending its functioning

- The model can be extended and applied to other such systems (RabitMQ,
ZeroMQ, MemCached, etc.)

POLYTECHNIQUE MONTREAL - Hervé Kabamba 16

Thank you

POLYTECHNIQUE MONTREAL - Hervé Kabamba 17

