Low-overnead Memory Error
Detection using Intel PT: From
ThreadMonitor to AddressMonitor

Farzam Dorostkar with Prof. Michel Dagenais
DIWALIVE

Polytechnique Montreal

DORSAL Laboratory

o
Recap

ThreadMonitor (TMon)

Post-mortem data race detector for C/C++ programs that use Pthreads

Offers the same data race detection analysis as ThreadSanitizer (TSan) but with significantly lower overhead

Traces the same runtime information captured by TSan for analysis purposes

= Uses Intel's ptwrite packets

» User-generated 64-bit payload

Uses the trace data to emulate the same runtime verification performed by TSan

No direct data memory overhead, minimal instruction memory overhead, very low runtime overhead

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

R —
Since Last Meeting

Previous Track: ThreadMonitor (TMon)

« Completed remaining implementation details

« Conducted a more comprehensive evaluation study
= Compared its performance with TSan on a set of SPEC CPU 2017 benchmarks
= Explored runtime effects introduced by the tracer (Linux perf)

* Presented it at Tracing Summit 2023

« Documented it as a paper

Current Track: AddressMonitor (AMon)

» Recently started, initiating the groundwork

* (Goal: detecting some other common memory errors

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

TMon Updates:
Compile-time
Instrumentation

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

TMon Updates: Compile-time Instrumentation

Compile-time instrumentation at LLVM IR level
* Function pass

» ldentify and instrument various types of memory accesses within user code

Main parts:
« Assessing Instrumentation Eligibility of a Function
 Function Traversal
* Instrumenting Non-atomic Memory Accesses
* Instrumenting Atomic Memory Operations
* Instrumenting Function Entry and Exit

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

o
TMon Updates: Compile-time Instrumentation

Function Traversal

The pass traverses the function to identify the memory access instructions.

« TMon targets the same set of instructions as TSan

* Non-atomic memory accesses
« Atomic memory operations

« TSan detects three redundancy cases in non-atomic accesses

1. Read-before-write happening within the same basic block, with no calls occurring between them
« The read instruction can be safely excluded from instrumentation
« The write instruction is marked as a compound access

2. Reading an address that points to constant data

3. Access addressable variables that are not captured
* Such variables cannot be referenced from a different thread

« TMon employs the same redundancy analysis, thereby instruments exactly the same instructions as TSan

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

o
TMon Updates: Compile-time Instrumentation

Instrumenting Non-atomic Memory Accesses

TSan inserts a call to a specialized runtime library function immediately before the access occurs.

+ The data race detection logic requires to obtain six properties pertaining to each non-atomic access

o K Wb

6.

Access type (read or write)

Access size (supports access sizes of 1, 2, 4, 8, and 16 bytes)
Whether aligned

Whether a compound access

Whether accesses a volatile memory location

Accessed address

» The first five properties contribute to a total of 50 distinct types of non-atomic accesses.

+ TSan encodes these five properties by employing a dedicated instrumentation function for each specific case.

tsan read4 () is used to instrument non-volatile read operations of size four bytes

« The last property (accessed address) is passed to the corresponding instrumentation function.

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

o
TMon Updates: Compile-time Instrumentation

Instrumenting Non-atomic Memory Accesses (Cont.)

TMon inserts a single ptwrite instruction immediately before the access occurs.

« Supports the same 50 different types of non-atomic memory accesses

« Traces the same six properties for each access

« The most significant byte of the payload cumulatively encodes the first five properties

» Allocating 50 unique values

« Each exclusively associated with one of the 50 instrumentation functions employed by TSan
« The six least significant bytes of the payload store the accessed address

« Enabling its postmortem analyzer to apply the same data race detection logic implemented in the

TSan runtime for analyzing non-atomic accesses

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

TMon Updates:
Enhanced Detection Coverage

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

o
TMon Updates: Enhanced Detection Coverage

TSan uses shadow cells to keep track of memory accesses.
« Every consecutive eight bytes of application memory are mapped to four shadow cells

« Each shadow cell encodes an access to the associated application memory region

« Upon detecting a new memory access, it is compared with prior conflicting accesses

encoded by shadow cells

« Overwriting shadow cells is a notable factor contributing to missing data races in TSan

« TSan uses a random selection strategy to overwrite shadow cells

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

TMon Updates: Enhanced Detection Coverage

TMon employs a postmortem adaptation of the shadow cell paradigm, but proposes a refined approach.
» Allocating More Shadow Cells
* Reduces the need to overwrite shadow cells

« Better Overwriting Policy

» Selecting the shadow cell associated with the access involving the least number of bytes
* Reduces the risk of overlapping with subsequent accesses

« The idea is also applicable to TSan

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

TMon Updates:
New Evaluation Study

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

R —
TMon Updates: New Evaluation Study

+ Aset of four SPEC CPU 2017 benchmarks
+ Executable size, execution time, and memory consumption
* Native compilation, under Tsan, and under TMon

Benchmark -
Exec. Time MRSS Exec. Time () MRSS (x) Exec. Time () MRSS (X)

Size (sec) (MB) Size (X) Size (X)
mcf 113 KB 5.9 292 13.3 X 3.7X 2.9 X 1.2 X 2.8Xx 2.1x
lbm 50 KB 1.0 420 28.5x 4.1 x 3.0x 1.9 x 5.1x 1.4x
namd 3 MB 1.8 160 1.8 x 7.5X 3.1x 1.2 x 2.2 X 1.5x
parest 75 MB 2.0 99 1.3x 9.0 x 4.7 x 1.1x 2.9 X 1.5x
Average 11.2x 6.1 X 3.5X 1.3x 3.2X 1.6 x

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

AddressMonitor (AMon)

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

_
AddressMonitor (AMon)

Post-mortem memory error detector for C/C++ programs
» Initial focus on detecting out-of-bound accesses
» Adaptation of a similar approach to TMon
» Traces the required runtime information for memory error detection using Intel PT
= Uses the trace data to emulate the same runtime verification performed by
AddressSanitizer (ASan)
O Motivation: ASan cause considerable memory and runtime overhead
» Does not require shadow memory
» Expected to have minimal instruction memory overhead

» Expected to have very low runtime overhead

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

R —
AddressMonitor (AMon)

Two main components:

1. Compile-time instrumentation of user code
= At LLVM IR level (function pass)
» [nstruments the same type of memory accesses monitored by ASan

= Uses a ptwrite packet to record the required runtime information for each access

2. Postmortem analyzer

» Performs the same analysis as Asan

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

Thanks!

Questions? Comments?

farzam.dorostkar@polymtl.ca
https://github.com/FarzamDorostkar

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

