
LTTng and
Related Projects

Update
DORSAL Progress Meeting

December 2023

Outline

• Ongoing collaborations

• LTTng

• Babeltrace

• Common Trace Format 2 (CTF 2)

• Restartable Sequences: Concurrency IDs and extensible RSEQ GNU libc integration

• Libside

• Userspace RCU library

• Exa-Tracer: ROCm and MPI LTTng-UST instrumentation

• Tracing Summit

2DORSAL Progress Meeting – December 2023

Ongoing Collaborations

• Ericsson,

• Ciena,

• AMD and Lawrence Livermore National Laboratory,

• Argonne National Laboratory,

• Internet Systems Consortium (ISC).

3DORSAL Progress Meeting – December 2023

LTTng 2.14

• Release planned for Q1 2024

• Main feature:

• Aggregation Maps (Trace Hit Counters)

4DORSAL Progress Meeting – December 2023

Recording vs. aggregation: level of details

• Aggregation: simply count occurrences of event rule matches

5DORSAL Progress Meeting – December 2023

+---+------------+----+----+

| key | val | uf | of |

+---+------------+----+----+

| syscall_entry_recvmsg | 3,404,391 | 0 | 0 |

+---+------------+----+----+

| kmem_kfree | 611,014 | 0 | 0 |

+---+------------+----+----+

Maps are presented like a regular back-end

• Create a user space map named my_map with session my_session

6DORSAL Progress Meeting – December 2023

$ lttng add-map --userspace --session=my_session

 --bitness=64 --max-key-count=1024

my_map

Performance of aggregation maps

• As expected, they are a lot cheaper to use than ring-buffer tracing

7DORSAL Progress Meeting – December 2023

Method Time per event (ns) σ (stdev)

LTTng-UST ring-buffer (4 × 8 MiB) 158 0.222

LTTng-UST map 43.3 0.656

LTTng-modules ring-buffer (4 × 8 MiB) 151 0.824

LTTng-modules maps 44.8 0.219

eBPF per-CPU array 57.0 0.683

Benchmark code available, see reference slide

Future work for aggregation maps

• Native histogram support

• Decrement value

• Use event payload in the incr-value action

• Use event size in the incr-value action (dry run mode)

8DORSAL Progress Meeting – December 2023

• Babeltrace 2.0: Optimize filter.utils.muxer to use a priority heap
instead of an array.
• Measured acceleration of up to 12x with 200+ streams; our customer

measures up to 6x (different hardware and use case).

• Slightly faster with 4 streams.

• Negligibly less efficient with one or two streams (could be fixed with
special handling).

• Upcoming in Babeltrace 2.1 (Q1 2024): Common Trace Format
(CTF) 2 support in all our component classes.

9DORSAL Progress Meeting – December 2023

Common Trace Format 2.0

• CTF2-SPECRC-8.1rA was released on August 28, 2023.

• Add the accuracy concept to a clock class.

• While the precision property of a clock class already describes the random
errors of an instance, the new accuracy property describes its systematic
errors.

• This feature makes it possible, for example, to sort more accurately
packets and event records having timestamps from different clocks
sharing the same origin.

• To improve consistency: make the trace, data stream, event record, and
clock class fragments have optional namespace, name, and UID
properties to help identify them.

10DORSAL Progress Meeting – December 2023

Common Trace Format 2.0

• CTF2-SPECRC-9.0 to be released before end of 2023.

• New bit order property for all fixed-length bit array field classes: encode/decode first to last or last to

first, whatever the endianness.

• New fixed-length bit map field class: fixed-length bit array field class with flags (named groups of bits,

overlaps allowed).

• No more enumeration field classes: any integer field class may have a mapping property (equivalent).

• Minor terminology changes.

• UTF-16 BE/LE and UTF-32 BE/LE encodings for null-terminated, static-length, and dynamic-length string

fields.

• Planned release in Babeltrace (2.1) and LTTng (2.15)

• Allows us to validate the specification (produce and consume)

11DORSAL Progress Meeting – December 2023

Restartable Sequences (RSEQ) ABI extensions

• Per memory-map concurrency id (mm_cid) (merged in Linux 6.3)

•Ideal scaling of user space per-cpu data structures

•Concurrency id is bounded by the number of concurrently running threads for a

given memory map at any given time.

• Integration of extensible RSEQ with GNU libc (submitted)

• Per memory-map NUMA cid (mm_numa_cid) (work in progress)

•Maintain NUMA-locality of per-cpu data structures

• Per-namespace (shared memory) concurrency id (future work)

12DORSAL Progress Meeting – December 2023

libside: Software Instrumentation Dynamically Enabled

• New instrumentation ABI

•Tracer-agnostic application instrumentation framework

•Usable from the purely user space tracers and from the kernel

•The ABI can be used to instrument various runtimes

•The C instrumentation API can be used to instrument C/C++

• Declare events statically or dynamically without code generation

•Reduced code footprint (less impact on the instruction cache)

•More flexible type system (variants, nested types, dynamic compound types)

• Spurred by the upstreaming of User events (Microsoft) into the Linux kernel

• Remaining work:

• Finalize ABI

• Integration with LTTng-UST

13DORSAL Progress Meeting – December 2023

Userspace RCU library

• Now used by the BIND name server,

• Requirement that Userspace RCU QSBR and the liburcu-cds data
structures support ThreadSanitizer (TSAN),

•Moving liburcu memory model to C11 atomics,
•Deprecating liburcu-signal
•Add annotation infrastructure to validate multiple stores/loads associated with
a single release/acquire barrier:
• Acquire group,
• Release group.

• To be released in upcoming liburcu 0.15,

• There is interest in Userspace RCU for the C++26 standard and GNU
libc
• Multi-domain URCU prototypes could be a good fit

DORSAL Progress Meeting – December 2023 14

ROCm Tools: Exa-Tracer

• Work ongoing to add LTTng-UST integration to ROCm Tools

• Instrumentation of ROC APIs with LTTng-UST:

• HIP

• HSA

• ROCtx

• ROC Profiler

• Instrumentation of OpenMPI and CrayMPI with LTTng-UST

15DORSAL Progress Meeting – December 2023

Roadmap

• LTTng 2.14: Q1 2024

• Babeltrace 2.1: Q1 2024

• LTTng 2.15: Q2 2024

• libside: Unknown, still evolving rapidly

• Userspace RCU 0.15: Q1 2024

16DORSAL Progress Meeting – December 2023

17DORSAL Progress Meeting – December 2023

References

• Aggregation maps benchmark repository

https://github.com/jgalar/LinuxCon2022-Benchmarks

• CTF 2 Release Candidate 8.1rA

https://diamon.org/ctf/files/CTF2-SPECRC-8.1rA.html

• libside repository

https://github.com/efficios/libside

18DORSAL Progress Meeting – December 2023

https://github.com/jgalar/LinuxCon2022-Benchmarks
https://diamon.org/ctf/files/CTF2-SPECRC-8.1rA.html
https://github.com/efficios/libside

	Slide 1: LTTng and Related Projects Update
	Slide 2: Outline
	Slide 3: Ongoing Collaborations
	Slide 4: LTTng 2.14
	Slide 5: Recording vs. aggregation: level of details
	Slide 6: Maps are presented like a regular back-end
	Slide 7: Performance of aggregation maps
	Slide 8: Future work for aggregation maps
	Slide 9
	Slide 10: Common Trace Format 2.0
	Slide 11: Common Trace Format 2.0
	Slide 12: Restartable Sequences (RSEQ) ABI extensions
	Slide 13: libside: Software Instrumentation Dynamically Enabled
	Slide 14: Userspace RCU library
	Slide 15: ROCm Tools: Exa-Tracer
	Slide 16: Roadmap
	Slide 17
	Slide 18: References

