Targeted Memory Runtime Analysis

David Piché
December 8t 2023

Polytechnique Montreal

DORSAL Laboratory

Agenda

Introduction
General approach
Implementation
Results

Discussion

o kA w hoE

Conclusion

POLYTECHNIQUE MONTREAL - David Piché

Introduction

* Memory issues in C/C++ are still prevalent
* Use-after-free
* Memory leaks
* Out-of-bound writes

e And much more...

* Runtime memory analysis
e Collects data on runtime execution

 Uses this data to detect memory errors and act accordingly

POLYTECHNIQUE MONTREAL - David Piché

Introduction : State of the Art

 Current memory runtime analysis tools uses similar techniques:

 Redzones
e Shadow Memory

* Pointer Tagging

* Memcheck of the Valgrind suite uses shadow memory to detect memory
errors.
 Slowdown factor of 22.2.

 AddressSanitizer requires compile-time instrumentation but achieves a
slowdown factor of 1.71.

 Raises the memory overhead significantly by the addition of redzones.

POLYTECHNIQUE MONTREAL - David Piché 4

The General Approach

* In many cases, the developer will have some information on the class of

objects predisposed to memory errors (such as object size).

 As opposed to using compile-time or runtime instrumentation to verify
memory accesses (which protects all allocated memory) , we let protected
memory accesses trigger a SIGSEGV signal, with an option to protect only a

subset of allocations based on those aforementioned factors.

 The smaller subset of memory allocations selected by the developer will

ensure lower overall time overhead.

POLYTECHNIQUE MONTREAL - David Piché 5

The General Approach

 This means, for our library, these important steps:
Get control before the access
Verify a valid access

Unprotect the object

1
2
3
4. Perform the access
5. Re-protect the object
6

Continue the execution

 We focus on the Intel x86_64 architecture.

POLYTECHNIQUE MONTREAL - David Piché 6

Implementation: Protecting memory objects

To protect dynamically allocated objects, we have implemented two methods:
* Pointer tainting using bits 47 to 63
e System call arguments may be tainted!
* Protect memory pages with mprotect() and the PROT_NONE flag

 Currently we allocate an entire page per object

POLYTECHNIQUE MONTREAL - David Piché 7

Implementation: Bounds checking

In order to verify the access, use bounds checking
* We need information regarding the memory access:
 Which register contains the tainted address

* Information on base, index, scale, offset to compute address for

bounds checking

 Use Capstone to disassemble instruction and retrieve relevant

information. Figure 1: Capstone logo [1]

POLYTECHNIQUE MONTREAL - David Piché

Implementation: Gaining control of the program

In order to unprotect the memory zone before the memory access instruction

and re-protect it after, we consider two main approaches:

* PTrace

e Qut-of-line code execution

POLYTECHNIQUE MONTREAL - David Piché

Implementation: Ptrace

 Use Ptrace with 2 different processes:

* The child process runs the program with the special allocators

 The parent process takes care of memory handling

* Ptrace used for communication between processes and single-step

 Using the CLONE_VM flag with clone() to make communication between the two

threads easier

Fork Child process Run program

Parent process Memory handling with Ptrace

POLYTECHNIQUE MONTREAL - David Piché

Implementation: LibOLX

 The LibOLX [2] library from Olivier Dion specializes in out of line code

execution.

* Produces binary instructions that emulate the memory access
instruction.

* Binary instructions may be specified by the developer to be run before
and after the emulated instruction.

 Most of the time overhead using this library comes from the SIGSEGV

signal handling of our approach.

POLYTECHNIQUE MONTREAL - David Piché 11

Implementation: Libpatch

Memory access instruction

 The Libpatch [3] library from Olivier Dion Memory access instruction (Replaced with jump)

l SIGSEGV lJmp
specializes in inserting probes at runtime.
Signal handler Probe
. Disassemble instruction Bounds checking
* |nstall patch at first encounter of Install patch Unprotect registar
instruction. l I
] .) i OLX buffer
e OLX buffer emulates instruction. Re-execute instruction Emulate instruction
* Post-probe allows us to re-protect !
Post-Probe
Re-protect register
address.
 SIGSEGV signals are not raised for l

Return to program

subsequent executions of the same

instruction, reducing overhead.

POLYTECHNIQUE MONTREAL - David Piché 12

Results: Configuration

* For each approach explored, 4 combinations are tested:
* Ptrace-mprotect: Using Ptrace while protecting memory with mprotect
* Ptrace-taint: Using Ptrace with pointer tagging
e OLX-taint: Using the LibOLX library with pointer tagging

e Patch-taint: Using the LibPatch library with pointer tagging

* The benchmarks were done on a AMD Ryzen 7 5700g with 32 Gb of RAM.

* The operating system was Ubuntu 22.04.2 LTS with the 5.19.0-50-generic

Linux kernel.

POLYTECHNIQUE MONTREAL - David Piché 13

Results: Allocation Distribution

* Analyzing the distribution of the sizes of allocated objects is important if we

wish to use it as a factor to select a subset of allocations to protect.

* For 15 benchmarks of SPEC CPU 2017 benchmark suite [4], a wrapper

library tracks every object allocation/deallocation.

POLYTECHNIQUE MONTREAL - David Piché 14

Results: Allocation Distribution

 The majority of the benchmarks have a large number of allocations of small objects (less

than 127 bytes).

* The current implementation of the mprotect approach when protecting memory pages

will incur a significant memory overhead.

865

ts
o =]
j=] Q
S =]

Number of allocated objec|
£
=]
(=]

~
o
=3

2 4] 0 4] 0 1]

T T T T T
1-127 128-1023 1024-4095 4096-8191 8192-32767 32768-131071 131072+
Size (bytes)

Figure 2: Allocation distribution of object
sizes for 523.xalancmbk_r

o

o
5}
=}

ects
u
=]
S

B
=3
5

300 4

Nb of allocated obj

N
=3
=)

T T T T T
o] 2 4 6 8
Time (cycles) le6

Figure 3: Number of allocated objects
over time for 523.xalancmbk_r

@
a

Nb of allocated bytes (bit)

25000

20000

15000

10000 A

o] 2 4 6 8
Time (cycles) 1le6

Figure 4: Number of bytes allocated
over time for 523.xalancmbk_r

POLYTECHNIQUE MONTREAL - David Piché

Results: Instruction Distribution

* During the first execution of an instruction:

* We must disassemble the instruction.
 The OLX buffer must be created with the OLX-taint approach.

* The instruction must be instrumented with the Patch-taint approach.

 The distribution of the frequency of memory access instructions is

measured.

POLYTECHNIQUE MONTREAL - David Piché 16

Results: Instruction Distribution

* Forall 7 test benchmarks analyzed, many instructions are run a high

number of times.

Benchmark Number of instructions run
1 times 2-10 times | 11-127 times | 128-1023 1024 times
times and more

505.mcf_r 129 30 11 43 317
523.xalancbmk_r [6209 3424 3183 1631 395
531.deepsjeng_r |[128 58 0 0 2
541.leela_r 184 133 498 166 261
519.]bm_r 109 13 4 37 234
526.blender_r 743 B36 451 249 290
544.nab_r 193 151 165 bo 248

Figure 5: Instruction distribution of the frequency
of memory access instructions

POLYTECHNIQUE MONTREAL - David Piché 17

Results: Time overhead

 Ptrace-mprotect: tests done with 7 benchmarks from the SPEC CPU suite.

 Ptrace-taint, OLX-taint, Patch-taint: tests done with a custom micro-

benchmark.
— - 1 crc = 0;

Approach Used | Time (s) | Overhead per Instruction 2 for (1 = 0; 1 < loop_size; 1++) {

No protection 0.017 - - SID L s Sem
Ptrace-mprotect | 173.120 5.6 ps z { line = table[}1;

Ptrace-taint 203.619 14.7 ps B cre += 1:

OLX-taint 22.649 1.13 ps T crc += line[0];

Patch-taint 1.320 65 ns g . ¥

TaBLE 4.4 Micro-benchmark results
Figure 6: Time overhead per Figure 7: Micro-benchmark code causing a memory error

memory instruction

POLYTECHNIQUE MONTREAL - David Piché 18

Discussion

 Many aspects of our approach may be applied to other architectures.

* When selecting a subset of allocations to protect based on object size, the

patch-taint approach is most interesting in terms of overhead.

 Using another factor to select a subset of allocations could make the OLX-

taint approach more interesting.

POLYTECHNIQUE MONTREAL - David Piché

19

Conclusion

 This work explores different techniques in order to reduce the overall

overhead of runtime memory analysis.
 The Patch-taint approach is the most promising in terms of overhead,

which is lowered significantly by selecting a small subset of allocations to

protect, using object size for example.

POLYTECHNIQUE MONTREAL - David Piché 20

References

[1] “"Capstone : The Ultimate Disassembler,” 2023. [Online]. Available :
http://www.capstone-engine.org/

[2] O. Dion, “LibOIx,” 2023. [Online]. Available : https://git.sr.ht/~old/libolx
[3] O. Dion, “LibPatch,” 2023. [Online]. Available :
https://git.sr.ht/~old/libpatch

[4] Standard Performance Evaluation Corporation, "SPEC CPU 2017,” 2017.
[Online]. Available : https://www.spec.org/cpu2017

POLYTECHNIQUE MONTREAL - David Piché 21

http://www.capstone-engine.org/

	Diapositive 1
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15
	Diapositive 16
	Diapositive 17
	Diapositive 18
	Diapositive 19
	Diapositive 20
	Diapositive 21

