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Introduction
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• Memory issues in C/C++ are still prevalent

• Use-after-free

• Memory leaks

• Out-of-bound writes

• And much more…

• Runtime memory analysis

• Collects data on runtime execution

• Uses this data to detect memory errors and act accordingly
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Introduction : State of the Art
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• Current memory runtime analysis tools uses similar techniques:

• Redzones

• Shadow Memory

• Pointer Tagging

• Memcheck of the Valgrind suite uses shadow memory to detect memory 

errors.

• Slowdown factor of 22.2 .

• AddressSanitizer requires compile-time instrumentation but achieves a 

slowdown factor of 1.71 .

• Raises the memory overhead significantly by the addition of redzones.



POLYTECHNIQUE MONTREAL – David Piché

The General Approach
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• In many cases, the developer will have some information on the class of 

objects predisposed to memory errors (such as object size).

• As opposed to using compile-time or runtime instrumentation to verify 

memory accesses (which protects all allocated memory) , we let protected 

memory accesses trigger a SIGSEGV signal, with an option to protect only a 

subset of allocations based on those aforementioned factors.

• The smaller subset of memory allocations selected by the developer will 

ensure lower overall time overhead.
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The General Approach
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• This means, for our library, these important steps:

1. Get control before the access

2. Verify a valid access

3. Unprotect the object

4. Perform the access

5. Re-protect the object

6. Continue the execution

• We focus on the Intel x86_64 architecture.
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Implementation: Protecting memory objects
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To protect dynamically allocated objects, we have implemented two methods:

• Pointer tainting using bits 47 to 63

• System call arguments may be tainted!

• Protect memory pages with mprotect() and the PROT_NONE flag

• Currently we allocate an entire page per object
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Implementation: Bounds checking
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In order to verify the access, use bounds checking

• We need information regarding the memory access:

• Which register contains the tainted address

• Information on base, index, scale, offset to compute address for 

bounds checking

• Use Capstone to disassemble instruction and retrieve relevant 

information.
Figure 1: Capstone logo [1]
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Implementation: Gaining control of the program
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In order to unprotect the memory zone before the memory access instruction

and re-protect it after, we consider two main approaches:

• PTrace

• Out-of-line code execution
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Implementation: Ptrace
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Child process

Parent process

Fork Run program

Memory handling with Ptrace

• Use Ptrace with 2 different processes:

• The child process runs the program with the special allocators

• The parent process takes care of memory handling

• Ptrace used for communication between processes and single-step

• Using the CLONE_VM flag with clone() to make communication between the two 

threads easier

   



POLYTECHNIQUE MONTREAL – David Piché

Implementation: LibOLX
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• The LibOLX [2] library from Olivier Dion specializes in out of line code 

execution.

• Produces binary instructions that emulate the memory access 

instruction.

• Binary instructions may be specified by the developer to be run before 

and after the emulated instruction.

• Most of the time overhead using this library comes from the SIGSEGV 

signal handling of our approach.
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Implementation: Libpatch
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• The Libpatch [3] library from Olivier Dion 

specializes in inserting probes at runtime.

• Install patch at first encounter of 

instruction.

• OLX buffer emulates instruction.

• Post-probe allows us to re-protect 

address.

• SIGSEGV signals are not raised for 

subsequent executions of the same 

instruction, reducing overhead.

Memory access instruction

(Replaced with jump)

Probe

Bounds checking

Unprotect register

OLX buffer

Emulate instruction

Post-Probe

Re-protect register

Return to program

Jmp

Memory access instruction

Signal handler

Disassemble instruction

Install patch

Re-execute instruction

SIGSEGV
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Results: Configuration
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• For each approach explored, 4 combinations are tested:

• Ptrace-mprotect: Using Ptrace while protecting memory with mprotect

• Ptrace-taint: Using Ptrace with pointer tagging

• OLX-taint: Using the LibOLX library with pointer tagging

• Patch-taint: Using the LibPatch library with pointer tagging

• The benchmarks were done on a AMD Ryzen 7 5700g with 32 Gb of RAM.

• The operating system was Ubuntu 22.04.2 LTS with the 5.19.0-50-generic 

Linux kernel.
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Results: Allocation Distribution
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• Analyzing the distribution of the sizes of allocated objects is important if we 

wish to use it as a factor to select a subset of allocations to protect.

• For 15 benchmarks of SPEC CPU 2017 benchmark suite [4], a wrapper 

library tracks every object allocation/deallocation.
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Results: Allocation Distribution
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• The majority of the benchmarks have a large number of allocations of small objects (less 

than 127 bytes).

• The current implementation of the mprotect approach when protecting memory pages 

will incur a significant memory overhead.

Figure 2: Allocation distribution of object 
sizes for 523.xalancmbk_r

Figure 3: Number of allocated objects 
over time for 523.xalancmbk_r

Figure 4: Number of bytes allocated 
over time for 523.xalancmbk_r
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Results: Instruction Distribution
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• During the first execution of an instruction:

• We must disassemble the instruction.

• The OLX buffer must be created with the OLX-taint approach.

• The instruction must be instrumented with the Patch-taint approach.

• The distribution of the frequency of memory access instructions is 

measured.
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Results: Instruction Distribution
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• For all 7 test benchmarks analyzed, many instructions are run a high 

number of times. 

Figure 5: Instruction distribution of the frequency 
of memory access instructions



POLYTECHNIQUE MONTREAL – David Piché

Results: Time overhead
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• Ptrace-mprotect: tests done with 7 benchmarks from the SPEC CPU suite.

• Ptrace-taint, OLX-taint, Patch-taint: tests done with a custom micro-

benchmark.

Figure 7: Micro-benchmark code causing a memory errorFigure 6: Time overhead per 
memory instruction



POLYTECHNIQUE MONTREAL – David Piché

Discussion
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• Many aspects of our approach may be applied to other architectures.

• When selecting a subset of allocations to protect based on object size, the 

patch-taint approach is most interesting in terms of overhead.

• Using another factor to select a subset of allocations could make the OLX-

taint approach more interesting.



POLYTECHNIQUE MONTREAL – David Piché

Conclusion
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• This work explores different techniques in order to reduce the overall 

overhead of runtime memory analysis.

• The Patch-taint approach is the most promising in terms of overhead, 

which is lowered significantly by selecting a small subset of allocations to 

protect, using object size for example.
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