Multi-Level Tracing of Containerized
Application Orchestrator

Benjamin Saint-Cyr

Polytechnique Montréal

DORSAL

POLYTECHNIQUE MONTREAL

Introduction

Cloud Computing
@ aggregation and distribution of computing resources in a
homogeneous way to clients
® Allows customers to scale up operations instantly

® Also facilitate the restitution of resources as needed

O Flexible billing based on usage

Multi-Level Tracing of Containerized Application Orchestrator — Benjamin Saint-Cyr 1/19 — dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Introduction

Containers
@ Containers have emerged as a more efficient method for
resource allocation and isolation
® Share the same Kernel

©® Containers simplify packaging and distribution services

® Provide a consistent runtime environment in both
development and production

Multi-Level Tracing of Containerized Application Orchestrator — Benjamin Saint-Cyr 2/19 — dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Introduction

@ Orchestrators are an easy way to deploy containers to the
cloud

® They enable the deployment of services using descriptive
configurations

©® Orchestrators facilitate achieving and maintaining the desired
state

O Also offers utilities for automatic scaling, implementing rollout
strategies, and managing configurations and secrets

Multi-Level Tracing of Containerized Application Orchestrator — Benjamin Saint-Cyr 3/19 — dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Introduction

@ Performance is an important factor
® Reduced latency enhances the quality of service provided
©® Quicker boot times improves elastic scaling

O More efficient resource utilization directly leads to reduced
hosting costs

Multi-Level Tracing of Containerized Application Orchestrator — Benjamin Saint-Cyr 4/19 — dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Research Objective

To observe and analyze the behaviour of a distributed system of
orchestrated containers, with the aim of facilitating the diagnosis
of performance issues

Multi-Level Tracing of Containerized Application Orchestrator — Benjamin Saint-Cyr 5/19 — dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Methodology

Performance Aspects

@ Quicker boot times enhance elasticity in scaling

® Better utilization of resources improves Quality of Service
(QoS) and reduces costs

Multi-Level Tracing of Containerized Application Orchestrator — Benjamin Saint-Cyr 6/19 — dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Methodology

User | Apiserver

Control plane

@ Scheduler

create to_schedule T T
send vAML deployment _ |

Parse, validate !
and convert to object |

Persist Pod object in db,
>

ACK.

| _ Get unscheduled Pod object

Update Pod Object

Assign Pod to Kubelet

i-Level Tracing of C

Node plane

Kubelet

schedule to_run__J g

| Get scheduled Pod objec

Create namespaces,
Prepare environement
and start containers

run_to_watch |
|_ Report Pod status i

Figure: Components and phases of a pod start up

ainerized Application Orchestrato

7/19

dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Methodology

d N

Controller

Kubecil

Worker LTTng-UST

node
Pod APl server Scheduler
LTTng-UST LTTng-UST

Kemel
I nstumentaton
App Kublet
[(R J LI

‘, i} Kernel ‘ ‘ (—J'*j Kernel ‘

Liing LTTng-relayd

| PN)
|

Instrumentation points|

[

Worker
Control
node J [N]
Worker Control
node node

Figure: Tracing Architecture

i-Level Tracing of Containerized Application Orchestrator — Benjami i 8/19 — dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Methodology

Common Issue During Execution : Managing CPU Limits

@ Limits are specified in cores, but enforced as quotas

® A container can use more cores than allocated

Quota = Cores Limit x Period

Throttled Time = Period x (Cores Used — Cores Limit)

Multi-Level Tracing of Containerized Application Orchestrator — Benjamin Saint-Cyr 9/19 — dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Methodology

Expectation Reallty

[Running Running PREEMPTED Running PREEMPTED |
Running Running Running PREEMPTED Running PREEMPTED |
Iddle Iddle Running PREEMPTED Running PREEMPTED |
Iddle Iddle | Running PREEMPTED Running PREEMPTED |
Iddie Iddle | Running PREEMPTED Running PREEMPTED |
Iddle Iddle | Running PREEMPTED Running PREEMPTED |
Iddle Iddle | Running PREEMPTED Running PREEMPTED |
Iddie Iddle | Running PREEMPTED Running PREEMPTED |

orsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Methodology

Running PREEMPTED Running PREEMPTED

(40ms) (60ms) (40ms) (60ms)

The app needed 100ms
The app was throttled 120ms

Figure: Example of Latency Introduced by CPU Limit

Multi-Level Tracing of Containerized Application Orchestrator — Benjamin Saint-Cyr 11/19 — dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Algorithm to characterize CPU usage per pod
Algorithm 1 CPU usage calculation per Cgroup

1: Define the function normalize(prevTime, time, cpuTime) as % x 100
2: procedure ANALYZECPUUSAGE(fetchParameters, stateSystem)
3 Initialize totalCpu < 0

4: Initialize prevlime < Get the start time from fetchParameters

5: Initialize w Axis < Initialize xAxis based on the time range and resolution

6: Initialize map threadUsage < Initialize the cpu usage of each thread based on stateSystem
T Initialize map C'groupUsage < Initialize the cpu usage of each cgroup based on stateSystem
8: for i < 0 to 2 'ngth — 1 do

9: time < xAwis|i]

10: for all (threadName, cpuTime) € fetchThreadsCpuUsage(time) do

11: totalCpu < totalCpu + cpuTime

12: normalizedT hreadC'pul sage < normalize(prevTime, time, cpulime)

13: threadU sage[threadName][i] < normalizedT hreadCpuU sage

14: if T'idToC group.contains(threadName) then

15: key < TidT oCgroup.get(thread N ame)

16: CgroupU sagelkey]|i] — CgroupU sagelkey]|i] +

normalizedThreadCpul sage

17: end if

18: end for

19: prevTime < time

20: end for

21: return CgroupUsage, threadUsage

22: end procedure

Iti-Level Tracing of Containerized Applicati estrator — Benjami i 12/19 — dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Results

Pod Lifecycle

& Resources = Statistics

1026:40

7 vse mongadts

oo
¥ serrevew mongads-0857cES
[——
e rewesds MBI
[t ————r—l

e s TICGASGR-icke
* user enice A5G
2100,

i State System Explorer =3 Progress. @ Pod Startup X =

*v 3 =n

102700 102720 102740 102800 102820 102840 102900 102920 1029:40 103000 103020 10:30:40

R MRS e e

SRR

T
T i RS
e ——

R T]

(T = e

CPU Usage @ Pod Startup Density x

Start Tim End Time Duration

(9 Per Process (incubator)

1027:7.955479.892 1028:27.500440 48€ 69,534.960,5 wcclet
10:27:073M581774 102808138677 450 60.27,095,67 prometheus 218k
10:2708.498 573722 10:28:08.685 768 109 60,188,194,35 ratngrecis67b4d4bds5 bepal
10:2709.077166 572 10:28:09.019 051897 59,941,86552 rating-service-S9TS7EG0-dpéz
T02709.595709 158 1 1354 59,463922,19
10:27:10.798 262663 10:28:09.702483310 56,904,200, review-storage-erice-G56TEAcS
10271543650 368 102810354 493667 58,810,833 tet-service- 708895054 g
1027:1393359 850 1028:10032161855 58,638,803,01 unique-c-srvice-Tr7c9797-b13
57.244,608,0C
102707154009 313 10:28:04.38140255 57,27,48093 plot-sevic-SccccAT5A-S17pb
102706553976 031 10:8:03.956 796 635 57,104,880,60 plot mongadh-44451cb9.manh 1l dm 1
1027713859 437330 102810706 16045 S6.87,376, 7% wser-mongodb-1S6cchsd0 T O S5 105 T8s 205 25 05 Bs 40s 455 505 Ss 605 65
1027714633186 556 341 s6623.248,77 buration

Tail Latency

count

ulti-Level Tracing of Containerized Application Orchestrator — Benjamin Saint-Cyr

sal.polymtl.ca

POLYTECHNIQUE MONTREAL

Results

Diagnosing Slow Pod Startup Issues Attributable to 1/0 Contentlon

= Resources 5 Control Flow [Statstcs

¥ b showeaselon-nade statupf-contnonlusUuIEA bt

posgrs

posgres0
MiHistogram @ Caroups CPU Usa x |53 Progress.
-8 fo-contention

N 4026532333

» 4026531835

2 Critcal Flow View & Flame Graph (incubator) X

2,000,000,000

@ podstartp x 8

DiProperties L Bookmarks

400,000,000

powr) B Thvesd) & Drskifo Aty
= 53 as o~
wonas tsoaso nonss 80800 180905 180s0
— —
— —
T
Pulling phase
Eloshoncaseo: Elocomenton = thesis bursabl I thessquranteE tstfullkube = thes-nginth =n

CPU Usage

w00
i A
I JI

LA
¥k

wcpu

w/\

TRoR4s TRo8sn TRo8ss TR09.00 TR09.05 "w0a10
gE-an ¢ -0

6000000000 8000000000 10,000000,000 12,000,000000 14000000000 16,000,000000

¥ lcontanerd 16172 by rocess

10 and unpigz were in the critical path

... dm
e

¥ ontsinerd 1672 by st
NewoRk
¥ containerd 16172 by thress

P

m
b LTt T
esarupi]

14/19

dorsal.polymtl.ca

Level Tracing of Conta

POLYTECHNIQUE MONT!

REAL

Results

CPU usage per cgroup and pod

Resources S+ ControlFlow

¥ thesis i ol SIS
" i TcSbbee

MiMistogram © Caroups CPUUsa x5 Progress [Properties L) Bookmarks
e thesis-nginxthrottled-full toal 56255% 160665
, 6531835 cgroup (48809 % 13939

» 4026532269

0 Saeadacs 4c91-47255012407 carow |

10-lsten-on-ip
20-emsubst-on-
20-enusubst-on
30-tune-worker-
ank
docker-entrypoi
find

nginw
func{2iN)
func{2iNT)
func{2INT)
func{2iN]
func{2iNT)

EEOC0OEEEECCRAAA

Iti-Level Tracing of C

cgrowp 0.238%

44589 0.006%
44593 0.002%
0.006%
44601 0.005%
44594 0.005%
44602 0.005%
44588 0.004%
44586 0.007%
2865%
0097%
44578 0.000%
44573 0001%
44572 0.005%
44576 0.000%
4575 0001%
44587 0.005%

67.875ms

F ™ fooivan | |

1751ms
6722174
1645ms
1354ms
1534ms
1525 m;
1266 ms
1876 ms
818778 m:
27807 ms
8391
2953 s
Taa2ms
1369445
2854035
1359ms

ainerized Applicati

£ io-showcaseio-

ey

100

Statstcs @ Pod Startup Density © PodStartup X | £) O Per Process incubator)) File Access (Follow Thread)

Diskif0 Activity -0
170635 7:06:40 706145 17:0650 17:06:55
-
e
e
Elocontention Enodo E thesisquarante i testfulkube £ thesis-ngincth =5

w ‘\H
WH

CPU Usage

h '
f il il

\i i \\} i
W i M‘,, fllad \‘ ‘,/ Wl w

~\r w

\W

.‘ W‘

|

M

estrator

0635 70640 70645 70650 0655

dorsal.polymt|

POLYTECHNIQUE MONTREAL

Results

Diagnose latency due to limits

& Resources 5+ Contrl Flow x I Statistics © P ©Podstartup () /0Perp)6 Thread) & DisklfO Activity

7065230 V0652340 10652360 10652380 V0652400 10652420

W ungmx process preempted ﬂ | |
2] 12

thesis.

 test fullkube

-] thesis-nginx-throttled-full
» 4026531835 ot
sonssazaes
88e2inch-4c-4725-9501 2600
T 500
CPU usage at 100-200% 4004
despite a capacity of 700% H ' '
* 30| M ‘
I
[N W\
200 oM\ |
|
o “ ‘M/'\/Nﬁ\(‘v,.ﬂ o ot
|
0

Iti-Level Tracing of Containerized Applicati estrator — Benjami i 16/19 — dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Conclusion

@ Demonstrates how tracing aids in observing the internal states of
the orchestrator

® Diagnosing issues at both the orchestrator and kernel levels

©® Highlights the utility of multi-level tracing for diagnostic purposes

Multi-Level Tracing of Containerized Application Orchestrator — Benjamin Saint-Cyr 17/19 — dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Conclusion

Future work

@ Reuse methodology for other resources: Network, memory, disk,
etc.

@ Use the trace data to characterize workload and improve scheduling

Multi-Level Tracing of Containerized Application Orchestrator — Benjamin Saint-Cyr 18/19 — dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Conclusion

Thank you!
Questions?

i-Level Tracing of Containerized Application Orchestrator — Benjamin Saint-Cyr 19/19 — dorsal.polymtl.ca

