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Introduction

Cloud Computing
@ aggregation and distribution of computing resources in a
homogeneous way to clients
® Allows customers to scale up operations instantly

® Also facilitate the restitution of resources as needed

O Flexible billing based on usage
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Introduction

Containers
@ Containers have emerged as a more efficient method for
resource allocation and isolation
® Share the same Kernel

©® Containers simplify packaging and distribution services

® Provide a consistent runtime environment in both
development and production
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Introduction

@ Orchestrators are an easy way to deploy containers to the
cloud

® They enable the deployment of services using descriptive
configurations

©® Orchestrators facilitate achieving and maintaining the desired
state

O Also offers utilities for automatic scaling, implementing rollout
strategies, and managing configurations and secrets
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Introduction

@ Performance is an important factor
® Reduced latency enhances the quality of service provided
©® Quicker boot times improves elastic scaling

O More efficient resource utilization directly leads to reduced
hosting costs
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Research Objective

To observe and analyze the behaviour of a distributed system of
orchestrated containers, with the aim of facilitating the diagnosis
of performance issues

Multi-Level Tracing of Containerized Application Orchestrator — Benjamin Saint-Cyr 5/19 — dorsal.polymtl.ca



POLYTECHNIQUE MONTREAL

Methodology

Performance Aspects

@ Quicker boot times enhance elasticity in scaling

® Better utilization of resources improves Quality of Service
(QoS) and reduces costs
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Methodology
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Methodology
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Methodology

Common Issue During Execution : Managing CPU Limits

@ Limits are specified in cores, but enforced as quotas

® A container can use more cores than allocated

Quota = Cores Limit x Period

Throttled Time = Period x (Cores Used — Cores Limit)
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Methodology
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Methodology
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Figure: Example of Latency Introduced by CPU Limit
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Algorithm to characterize CPU usage per pod
Algorithm 1 CPU usage calculation per Cgroup

1: Define the function normalize(prevTime, time, cpuTime) as % x 100
2: procedure ANALYZECPUUSAGE(fetchParameters, stateSystem)
3 Initialize totalCpu < 0

4: Initialize prevlime < Get the start time from fetchParameters

5: Initialize w Axis < Initialize xAxis based on the time range and resolution

6: Initialize map threadUsage < Initialize the cpu usage of each thread based on stateSystem
T Initialize map C'groupUsage < Initialize the cpu usage of each cgroup based on stateSystem
8: for i < 0 to 2 'ngth — 1 do

9: time < xAwis|i]

10: for all (threadName, cpuTime) € fetchThreadsCpuUsage(time) do

11: totalCpu < totalCpu + cpuTime

12: normalizedT hreadC'pul sage < normalize(prevTime, time, cpulime)

13: threadU sage[threadName][i] < normalizedT hreadCpuU sage

14: if T'idToC group.contains(threadName) then

15: key < TidT oCgroup.get(thread N ame)

16: CgroupU sagelkey]|i] — CgroupU sagelkey]|i] +

normalizedThreadCpul sage

17: end if

18: end for

19: prevTime < time

20: end for

21: return CgroupUsage, threadUsage

22: end procedure
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Results

Pod Lifecycle
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Results
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Results

CPU usage per cgroup and pod
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Results

Diagnose latency due to limits
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Conclusion

@ Demonstrates how tracing aids in observing the internal states of
the orchestrator

® Diagnosing issues at both the orchestrator and kernel levels

©® Highlights the utility of multi-level tracing for diagnostic purposes
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Conclusion

Future work

@ Reuse methodology for other resources: Network, memory, disk,
etc.

@ Use the trace data to characterize workload and improve scheduling
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Conclusion

Thank you!
Questions?
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