
COST AWARE
TRACING OF

SOFTWARE SYSTEMS

Amir Haghshenas
Naser Ezzati-Jivan
Michel Dagenais

Fall 2023

AGENDA
Review of first track

Result and Analysis

Second track problem statement

Second track progress

Next steps

1

01 - TRACING IS COSTLY

02 - OBJECTIVE & COST(S)

03 - COST AWARE
FRAMEWORK

Tracing and logging a software will introduce
unaccounted costs on the system such as
performance overhead or large memory and
disk consumption

Every tracing configuration is for a goal and not
all of them target similar software regions.
Cost of tracing can also be categorized in
multiple groups and sub-groups.

Balancing the quality and quantity of the
tracing configuration can be done using a cost-
aware tracing framework by solving an
optimization problem.

2

COST FUNCTIONS

EXECUTION TIME OVERHEAD

DISK OVERHEAD

OPPORTUNITY COST

MEMORY OVERHEAD

CODE SIZE

MAINTENANCE CSOT

ANALYSIS COST EGNERGY COST

3

COST AWARE TRACING FRAMEWORK

Combine cost and value
metrics into one integer in
order to map the problem

to Knapsack problem

1

2

3

4

5

For selected tracing
objective (performance

monitoring), identify
metrics to calculate

effectiveness (value)

For selected cost
function (execution

time), identify metrics
to calculate the cost

Solve the optimization
problem to minimize
cost and maximize

effectiveness

Suggest selected
functions as initial

tracing configuration

4

PROTOTYPE WORK FLOW

5

USE CASE
A software with large number of functions as target application

for tracing.

Not all functions should be enabled for efficient performance
monitoring due to heavy execution time overhead.

Using the cost-aware framework we can select the top functions
with uncertain execution time to be initially enabled for tracing.

6

SECOND TRACK
In this track, we are focusing a new cost function for tracing and

logging which is the analysis cost. The goal is to analyze the
history of logging in large open source applications, to find the

logging effectiveness in the bug fixing process.

7

PROBLEM

SOLUTION

CONTRIBUTION

Software systems are usually heavily logged for
different purposes. But not all the generated
logs are useful. How to reduce the number of
logs and keep the most relevant ones.

Study the historical data of the commits for
large open-source applications to understand
the relation between logging statements and
bug-fixing commits.

Learn from changed functions and their logging
statements and suggest logging decision for
new functions.

8

SECOND TRACK PROGRESS

Select popular open-source
application in Java and

Python

1

2

3

4

5

6

Get all the commits
from GitHub

Filter commits that fixed a
bug using a combination of

selected keywords

Identify the changed
file and functions for

each commit

Extract static
metrics from both

log statements and
functions

Using different methods,
learn the relation between

log statement and bug
fixing commit

9

LOG FEATURE LIST

LOG PRESENCE

LOG LEVEL

CONTEXTUAL INFORMATION

LOG MESSAGE LENGTH

PLACEMENT OF LOG

COMMENTS NEAR LOG

LOG FREQUENCY EGNERGY COST

10

FUNCTION FEATURE LIST

FUNCTION COMPLEXITY

INPUT VALIDATION

CONDITIONAL STATEMENT

MULTI THREADING

LOOP STRUCTURE SEMANTIC FEATURES

11

USE CASE
The target application generates large log files due to many log

statements that are placed in the code.

Finding the most relevant log lines from the whole log lines
generated will take so much effort (analysis cost).

Using the result of the second track, we will be able to reduce
the number of logs that are generated while keeping the most

relevant log lines.

12

NEXT STEPS
Learn from the extracted features and suggest log statements

that can be removed from the application in order to reduce the
analysis cost.

For a new and unknown function, only extracting the syntactic
and semantic features should help us determine if the function

should be logged on not.

13

THANK YOU
amir.haghshenas@polymtl.ca

14

