
Low-overhead trace collection and profiling
on GPU compute kernels

Sébastien Darche <sebastien.darche at polymtl.ca>

December 8, 2022

Dorsal - Polytechnique Montréal

1

Introduction

• GPUs have become ubiquitous in many fields, notably HPC and
machine learning

• Multiple programming models have been developped, both low and
high level

• CUDA, HIP, OpenCL
• SYCL, OpenMP, OpenACC

• GPU programming remains a difficult task

2

Motivation

• Tooling is maturing
• ROC-profiler
• Intel VTune
• HPCToolkit1, ...

• Mostly from the point of view of the host

• However, little to no information about what is actually happening
on the device

1K. Zhou, L. Adhianto, J. Anderson, et al., “Measurement and analysis of gpu-accelerated applications
with hpctoolkit,” Parallel Computing, vol. 108, p. 102 837, 2021.

3

Shortcomings of current work

• Most tools rely on hardware performance counters and/or PC
sampling

• CUDAAdvisor2 proposes LLVM-based instrumentation of compute
kernels

• little consideration for overhead (costly kernel-wide atomic
operations)

• Overhead ranging from ∼ 10× to 120×

• CUDA Flux3 introduces CFG instrumentation combined with static
analysis

• only one thread is instrumented, does not support divergence
• Overhead ranging from ∼ 1× to 151× (avg. 13.2×)

2D. Shen, S. L. Song, A. Li, et al., “Cudaadvisor: Llvm-based runtime profiling for modern gpus,” in
Proceedings of the 2018 International Symposium on Code Generation and Optimization, 2018.
3L. Braun and H. Fröning, “Cuda flux: A lightweight instruction profiler for cuda applications,” in 2019
IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer
Systems, 2019.

4

Method

We propose a method for instrumenting kernel execution on the GPU
with a minimal runtime overhead.

• Relies on a set of LLVM passes for the host and device IR

• Multi-stage performance analysis
• CFG counters to retrieve the control flow of the program
• Event collection for precise analysis
• Optionally, original kernel for timing data

• Knowledge of the control flow allows for pre-allocation of the buffers

• Deterministic execution is ensured by reverting memory

5

Use cases

• First run (low overhead) can generate accurate custom software
performance counters from the CFG counters

Event collection is more costly, but much more insightful :

• Control flow analysis
• Precise execution sequence to analyze wavefront lifetime, thread

divergence

• Precise memory divergence analysis
• Could point out poor data locality (how and where), which is critical

in GPUs

• Extensible data collection framework

In-between heavyweight GPU simulation and lightweight profiling

6

Quick example

• CFG counters can generate the total number of FLOPs

• Original run allows us to compute the Arithmetic Intensity
(FLOPs/s)

• A quick roofline plot shows we’re way bellow expected performance

• We decide to collect more data for analysis with the event collection
pass

• Precise thread divergence
• If needed, obtain accessed addresses for locality analysis

7

Implementation - Results

• Main design goals are runtime overhead and ease of use
• Only a few compiler flags

• First results are encouraging : overhead of ∼ 7× to 15×
• Lower than comparable work

• Trade-off between runtime and memory overhead

• Trace format, analysis and graphs implemented in a TraceCompass
plugin

Following screenshots taken from the TraceCompassGpu plugin

8

State system analysis

Which basic block each wavefront is executing

9

Cumulated waves througput

In green, total throughput (FLOP/s) of the kernel

10

Occupancy

Instantaneous occupancy of the device (hovering around 70%)

11

Conclusion and future work

• Next step is implementing a runtime event collector on the GPU
• would eliminate the need for the first CFG run
• a challenge for GPU execution models

• Integrate well-known performance models and microarchitectural
particularities in the analysis framework

• Available freely on Github, feedback and/or use cases are more than
welcome

Sebdar/hip-analyzer

Hipcc plugin for performance analysis of HIP applications

C++ 1

Sebdar/TraceCompassGpu

Trace Compass GPU plugins

Java

12

