
Early Detection and Proactive Taming of 

Memory Pressure Problems

Pranjal Chakraborty

Department Of Computer Science

Brock University, ON, Canada

Supervisor: Dr. Naser Ezzati-Jivan

Email:

pcborty@outlook.com

pchakraborty@brocku.ca



Introduction

2

❑ Memory pressure

❑ Process(es) needing wait time to swap in pages from page cache

❑ Out of Memory (OOM) and OOM Killer

❑ A memory stall preventing mechanism

❑ Application context

❑ Any kind of resource constrained systems



Challenges

3

❑ Finding out the early signs of memory pressure

❑ Optimizing process level metric or trace data collection

❑ A better OOM killer



Methods to Deal with Memory Pressure

4

Reactive approach: The system has already experienced high memory usage and we are scrambling 

for any information to make a decision

❑ How most of the recent literature and the default OOM killer works

❑ By monitoring process level metrics and triggering OOM reactively, using a new 

algorithm [1]

❑ By exploring and comparing different configurations of swappiness in cgroups [2]

❑ By using a novel memory pressure calculation strategy [3]



Methods to Deal with Memory Pressure

5

• Proactive approach

❑ Identifying early, collect more targeted information, and make a more 

informed decision

❑ Little overhead, higher observability



Phase 1: Early Identification of Memory Pressure

6

Subproblems

❑ What metrics should we use and what will be the frequency?

❑ Can we learn the pattern of memory activities overtime and do this intelligently?​

❑ What is the overhead of this kind of approach?​



Phase 1: Early Identification of Memory Pressure

7

Subproblem 1.1 : Used metrics

❑ 30 memory related statistics (paging, hugepage utilization, swap page utilization, and general 

memory utilization)

❑ 2 kernel events call count (mm_page_alloc, kmalloc)

❑ 1 system call count (sys_brk)

Subproblem 1.2 : Frequency

❑ 1s (500ms has higher footprint, but the performance improvement is minimal)



Phase 1: Early Identification of Memory Pressure

8

Subproblem 2 : A self-supervised approach to detect early signs of memory pressure

❑ Used benchmarking tools to create random memory activities

❑ Collected data for over 85000 timestamps (around 24 hours)

❑ Converted memory usage info into one-hot encoded phases, and used it as our dependent 

variable



Phase 1: Early Identification of Memory Pressure

9

Subproblem 2 : A self-supervised approach to detect early signs of memory pressure

❑ n timestamps of observation, with time-gap of k timestamps, are our independent variables

❑ A balanced and normalized dataset for reduced bias

❑ Best results were achieved using 2 phases (under 85% memory usage vs. over 85%), essentially 

making it a binary classifier.



Phase 1: Early Identification of Memory Pressure

10

Subproblem 2 : A self-supervised approach to detect early signs of memory pressure

❑ A simple 5-layer architecture, with one dropout layer in-between to prevent overfitting.

❑ Consistently reached ~86% accuracy. Other metrics are also showing promising results.

❑ Was reaching the minimum training loss within 50 epochs.

❑ An online approach has also been tested.



Phase 1: Early Identification of Memory Pressure

11

Subproblem 2 : A self-supervised approach to detect early signs of memory pressure

Data Representation DNN Architecture



Phase 1: Early Identification of Memory Pressure

12

Subproblem 2 : A self-supervised approach to detect early signs of memory pressure

n = 3, k = 3 n = 4, k = 3 n = 4, k = 4

Test Data Performance



Phase 1: Early Identification of Memory Pressure

13

Subproblem 2 : A self-supervised approach to detect early signs of memory pressure

n = 3, k = 3, 78% n = 4, k = 3, 85% n = 4, k = 4, 60%

Test Data Performance with more tolerance to False-Positives



Phase 2: Taming Memory Pressure

14

❑ Start collecting process level information and make a memory usage profile for high memory 

occupying processes

❑ Bypass OOM killer to better identify culprit processes and kill

❑ Store information for debugging

❑ Challenges

❑ System is already in stress, how much data do we want to collect

❑ Offloading this task is not an option as there’s latency involved



Conclusion

15

❑ A difficult task indeed, but results so far are promising

❑ Overhead is still a big concern

❑ Production testing will give more insight

Questions?

1. Channabasappa, Smita Koralahalli. Performance Analysis and Control of Latency Under Memory Pressure in The Linux Kernel for Edge Computing. Diss. The University of North Carolina at Charlotte, 

2019.​

2. Zhuang, Zhenyun, et al. "Taming memory related performance pitfalls in linux Cgroups." 2017 International Conference on Computing, Networking and Communications (ICNC). IEEE, 2017.​

3. Xin, Linlin, Hongjie Fan, and Zhiyi Ma. "An Optimization of Memory Usage Based on the Android Low Memory Management Mechanisms." International Conference on Mobile Computing, 

Applications, and Services. Springer, Cham, 2020.​


