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Introduction
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❑ Memory pressure

❑ Process(es) needing wait time to swap in pages from page cache

❑ Out of Memory (OOM) and OOM Killer

❑ A memory stall preventing mechanism

❑ Application context

❑ Any kind of resource constrained systems



Challenges
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❑ Finding out the early signs of memory pressure

❑ Optimizing process level metric or trace data collection

❑ A better OOM killer



Methods to Deal with Memory Pressure
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Reactive approach: The system has already experienced high memory usage and we are scrambling 

for any information to make a decision

❑ How most of the recent literature and the default OOM killer works

❑ By monitoring process level metrics and triggering OOM reactively, using a new 

algorithm [1]

❑ By exploring and comparing different configurations of swappiness in cgroups [2]

❑ By using a novel memory pressure calculation strategy [3]



Methods to Deal with Memory Pressure

5

• Proactive approach

❑ Identifying early, collect more targeted information, and make a more 

informed decision

❑ Little overhead, higher observability



Phase 1: Early Identification of Memory Pressure
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Subproblems

❑ What metrics should we use and what will be the frequency?

❑ Can we learn the pattern of memory activities overtime and do this intelligently?​

❑ What is the overhead of this kind of approach?​



Phase 1: Early Identification of Memory Pressure
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Subproblem 1.1 : Used metrics

❑ 30 memory related statistics (paging, hugepage utilization, swap page utilization, and general 

memory utilization)

❑ 2 kernel events call count (mm_page_alloc, kmalloc)

❑ 1 system call count (sys_brk)

Subproblem 1.2 : Frequency

❑ 1s (500ms has higher footprint, but the performance improvement is minimal)



Phase 1: Early Identification of Memory Pressure
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Subproblem 2 : A self-supervised approach to detect early signs of memory pressure

❑ Used benchmarking tools to create random memory activities

❑ Collected data for over 85000 timestamps (around 24 hours)

❑ Converted memory usage info into one-hot encoded phases, and used it as our dependent 

variable



Phase 1: Early Identification of Memory Pressure
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Subproblem 2 : A self-supervised approach to detect early signs of memory pressure

❑ n timestamps of observation, with time-gap of k timestamps, are our independent variables

❑ A balanced and normalized dataset for reduced bias

❑ Best results were achieved using 2 phases (under 85% memory usage vs. over 85%), essentially 

making it a binary classifier.



Phase 1: Early Identification of Memory Pressure
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Subproblem 2 : A self-supervised approach to detect early signs of memory pressure

❑ A simple 5-layer architecture, with one dropout layer in-between to prevent overfitting.

❑ Consistently reached ~86% accuracy. Other metrics are also showing promising results.

❑ Was reaching the minimum training loss within 50 epochs.

❑ An online approach has also been tested.



Phase 1: Early Identification of Memory Pressure
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Subproblem 2 : A self-supervised approach to detect early signs of memory pressure

Data Representation DNN Architecture



Phase 1: Early Identification of Memory Pressure
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Subproblem 2 : A self-supervised approach to detect early signs of memory pressure

n = 3, k = 3 n = 4, k = 3 n = 4, k = 4

Test Data Performance



Phase 1: Early Identification of Memory Pressure
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Subproblem 2 : A self-supervised approach to detect early signs of memory pressure

n = 3, k = 3, 78% n = 4, k = 3, 85% n = 4, k = 4, 60%

Test Data Performance with more tolerance to False-Positives



Phase 2: Taming Memory Pressure
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❑ Start collecting process level information and make a memory usage profile for high memory 

occupying processes

❑ Bypass OOM killer to better identify culprit processes and kill

❑ Store information for debugging

❑ Challenges

❑ System is already in stress, how much data do we want to collect

❑ Offloading this task is not an option as there’s latency involved



Conclusion
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❑ A difficult task indeed, but results so far are promising

❑ Overhead is still a big concern

❑ Production testing will give more insight

Questions?
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