Targeted Memory Runtime Analysis

David Piché
December 8th. 2022

Polytechnique Montreal

DORSAL Laboratory




o
Agenda

1. Introduction

2. Previous work

3. Our general approach
1. Using Ptrace
2. Using Ptrace and shared virtual memory
3. Using instruction emulation

4. Results

5. Future Works

POLYTECHNIQUE MONTREAL - David Piché 2




Introduction

 Memory issues in C/C++ are still prevalent
* Use-after-free
e Memory leaks
* QOut-of-bound writes

e And much more...

POLYTECHNIQUE MONTREAL - David Piché



Previous Work

e X86_64 architecture
 Minimal approach to recreate datawatch:
e Qverwrite the malloc/realloc to add a taint.

* Tainted pointers: use bits 47 to 63 for pointer tainting.

Ox |001a |[Lab4e62a5443]

l l

Taint Memory address

POLYTECHNIQUE MONTREAL - David Piché 4




Our general approach: Memory Handler

* For each memory access, we need to:

e Use asignal handler (SIGSEGV, SIGBUS...)

* |dentify the right register with the tainted address
 Disassemble using capstone

Do bounds checking

* Un-taint the address

* Execute the faulty instruction

* Re-taint the address

e How can we do those last 2 steps?

POLYTECHNIQUE MONTREAL - David Piché 5




Our general approach: Ptrace

 Use Ptrace with 2 different processes
 The child process runs the program with the special allocators

 The parent process takes care of memory handling

* Ptrace used for communication between processes and single-step

Fork Child process Run program

Parent process Memory handling with Ptrace

POLYTECHNIQUE MONTREAL - David Piché 6




Our general approach: Ptrace

e 2 processes do not share the same virtual memory!

* We need to do multiple Ptrace PEEKDATA calls with each tainted

Memaory access

e Additional overhead!

POLYTECHNIQUE MONTREAL - David Piché



Our general approach: Ptrace and shared virtual memory

* Using clone() instead of fork(), we can use the same virtual

memory for the two processes (CLONE_VM)

 Less overhead, as the Ptrace PEEKDATA calls are no longer

needed

* Ongoing development

POLYTECHNIQUE MONTREAL - David Piché 8




Our general approach: Instruction emulation

e Using Olivier’s Libpatch, we can directly emulate the instructions

* Reduces significantly the need for signal handling

* Ongoing development

POLYTECHNIQUE MONTREAL - David Piché



Result: Overhead

* For each tainted memory access, the approach with Ptrace
needs ~100us.

* With the Ptrace with clone() approach, we can remove multiple
Ptrace PEEKDATA calls per memory access (each being ~2us).

* With libpatch, performance improved, as we only have to call

the special handler once for each tainted address.

POLYTECHNIQUE MONTREAL - David Piché 10




Future Works

 Use the upper 16 bits to store useful information:

 Objectid: identify objects more prone to memory errors

* Use tags instead of object ids

* Targeted memory analysis

 Taint some memory allocations based on parameters (size?)

POLYTECHNIQUE MONTREAL - David Piché 11




