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Introduction

 Memory issues in C/C++ are still prevalent
* Use-after-free
e Memory leaks
* QOut-of-bound writes

e And much more...
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Previous Work

e X86_64 architecture
 Minimal approach to recreate datawatch:
e Qverwrite the malloc/realloc to add a taint.

* Tainted pointers: use bits 47 to 63 for pointer tainting.

Ox |001a |[Lab4e62a5443]

l l

Taint Memory address
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Our general approach: Memory Handler

* For each memory access, we need to:

e Use asignal handler (SIGSEGV, SIGBUS...)

* |dentify the right register with the tainted address
 Disassemble using capstone

Do bounds checking

* Un-taint the address

* Execute the faulty instruction

* Re-taint the address

e How can we do those last 2 steps?
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Our general approach: Ptrace

 Use Ptrace with 2 different processes
 The child process runs the program with the special allocators

 The parent process takes care of memory handling

* Ptrace used for communication between processes and single-step

Fork Child process Run program

Parent process Memory handling with Ptrace
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Our general approach: Ptrace

e 2 processes do not share the same virtual memory!

* We need to do multiple Ptrace PEEKDATA calls with each tainted

Memaory access

e Additional overhead!
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Our general approach: Ptrace and shared virtual memory

* Using clone() instead of fork(), we can use the same virtual

memory for the two processes (CLONE_VM)

 Less overhead, as the Ptrace PEEKDATA calls are no longer

needed

* Ongoing development
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Our general approach: Instruction emulation

e Using Olivier’s Libpatch, we can directly emulate the instructions

* Reduces significantly the need for signal handling

* Ongoing development
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Result: Overhead

* For each tainted memory access, the approach with Ptrace
needs ~100us.

* With the Ptrace with clone() approach, we can remove multiple
Ptrace PEEKDATA calls per memory access (each being ~2us).

* With libpatch, performance improved, as we only have to call

the special handler once for each tainted address.
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Future Works

 Use the upper 16 bits to store useful information:

 Objectid: identify objects more prone to memory errors

* Use tags instead of object ids

* Targeted memory analysis

 Taint some memory allocations based on parameters (size?)

POLYTECHNIQUE MONTREAL - David Piché 11




