
Targeted Memory Runtime Analysis

David Piché

December 8th, 2022

Polytechnique Montreal

DORSAL Laboratory



POLYTECHNIQUE MONTREAL – David Piché

Agenda

2

1. Introduction
2. Previous work
3. Our general approach

1. Using Ptrace
2. Using Ptrace and shared virtual memory
3. Using instruction emulation

4. Results
5. Future Works



POLYTECHNIQUE MONTREAL – David Piché

Introduction

3

• Memory issues in C/C++ are still prevalent

• Use-after-free

• Memory leaks

• Out-of-bound writes

• And much more…



POLYTECHNIQUE MONTREAL – David Piché

Previous Work

4

• X86_64 architecture

• Minimal approach to recreate datawatch:

• Overwrite the malloc/realloc to add a taint.

• Tainted pointers: use bits 47 to 63 for pointer tainting.

0x   001a   1ab4e62a5443

• X86_64 architecture

• Minimal approach to recreate datawatch:

• Overwrite the malloc/realloc to add a taint.

• Tainted pointers: use bits 47 to 63 for pointer tainting.

0x   001a   1ab4e62a5443

Taint Memory address



POLYTECHNIQUE MONTREAL – David Piché

Our general approach: Memory Handler

5

• For each memory access, we need to:

• Use a signal handler (SIGSEGV, SIGBUS…)
• Identify the right register with the tainted address

• Disassemble using capstone
• Do bounds checking
• Un-taint the address
• Execute the faulty instruction
• Re-taint the address

• How can we do those last 2 steps?



POLYTECHNIQUE MONTREAL – David Piché

Our general approach: Ptrace

6

• Use Ptrace with 2 different processes

• The child process runs the program with the special allocators

• The parent process takes care of memory handling

• Ptrace used for communication between processes and single-step

Child process

Parent process

Fork Run program

Memory handling with Ptrace



POLYTECHNIQUE MONTREAL – David Piché

Our general approach: Ptrace

7

• 2 processes do not share the same virtual memory!

• We need to do multiple Ptrace PEEKDATA calls with each tainted 

memory access

• Additional overhead!



POLYTECHNIQUE MONTREAL – David Piché

Our general approach: Ptrace and shared virtual memory

8

• Using clone() instead of fork(), we can use the same virtual 

memory for the two processes (CLONE_VM) 

• Less overhead, as the Ptrace PEEKDATA calls are no longer 

needed

• Ongoing development



POLYTECHNIQUE MONTREAL – David Piché

Our general approach: Instruction emulation

9

• Using Olivier’s Libpatch, we can directly emulate the instructions

• Reduces significantly the need for signal handling

• Ongoing development



POLYTECHNIQUE MONTREAL – David Piché

Result: Overhead

10

• For each tainted memory access, the approach with Ptrace

needs ~100µs.

• With the Ptrace with clone() approach, we can remove multiple 

Ptrace PEEKDATA calls per memory access (each being ~2µs).

• With libpatch, performance improved, as we only have to call 

the special handler once for each tainted address.



POLYTECHNIQUE MONTREAL – David Piché

Future Works

11

• Use the upper 16 bits to store useful information:

• Object id: identify objects more prone to memory errors

• Use tags instead of object ids

• Targeted memory analysis

• Taint some memory allocations based on parameters (size?)


