
Trend-Based Multi-Level Adaptive Tracing

Mohammed Adib Khan

Department Of Computer Science

Brock University, Canada

Supervisor: Dr. Naser Ezzati-Jivan

ak19qp@brocku.ca



Adaptive Tracing

2

Adaptive tracing – tracing instruments are controlled by a framework to figure out points of interest and keep on 

adjusting them automatically.



Ideas & Research Questions

3

❑ Different types of approach:

➢ Anomaly based

➢ Clustering / Grouping

➢ Pairwise similarity

➢ Trend based

❑ We are interested in change detection of a trend.

➢ We assume a change in trend of method execution time or system call execution time may become a culprit for 

performance problems at present or in the future.

❑ Problem we are trying to address:- performance related issues in production.

❑ Research questions:

➢ How can we learn the tracing profile of each application?

➢ How can we detect behavior changes on runtime?

➢ Should we adjust tracing config whenever there is a major change?

➢ What are the possible actions in regard to the detected changes?

➢ How do we decide to change the tracing config? 

➢ How do we evaluate the trace adjustments?



Proposed Method

4

❑ Multi-level (user level and kernel level) trend-based adaptive tracing.

❑ The method has two phases:

➢ Learning phase-

❖ Build application tracing profile.

➢ Change detection phase-

❖ Detect change in trend of methods and syscalls execution time.

❖ Adjust tracing configurations based on the detected changes.



TBML Adaptive Tracing Method – Tracing Profile Learning Phase

5



TBML Adaptive Tracing Method – Tracing Profile Learning Phase

6

❑ Preliminary Monitoring:

➢ Application and system-wide monitoring of call stacks.

➢ Set a reasonable snapshot period (e.g 10ms for a browser)

➢ Stop after sufficient number of tasks have been performed by the system 

and recorded.

➢ We run the applications several times under different loads and stress 

satiations for the different scenarios of the software.



TBML Adaptive Tracing Method – Tracing Profile Learning Phase

7

❑ Family group identification:

➢ Breakdown method calls into pairs of parent and child.



TBML Adaptive Tracing Method – Tracing Profile Learning Phase

8

❑ Family group identification:

➢ Breakdown method calls into pairs of parent and child.

➢ Rank list in descending order of number of calls between parent and child.



TBML Adaptive Tracing Method – Tracing Profile Learning Phase

9

❑ Family group identification:

➢ Breakdown method calls into pairs of parent and child.

➢ Rank list in descending order of number of calls between parent and child.

➢ Find execution time of method calls.



TBML Adaptive Tracing Method – Tracing Profile Learning Phase

10

❑ Family group identification:

➢ Breakdown method calls into pairs of parent and child.

➢ Rank list in descending order of number of calls between parent and child.

➢ Find execution time of method calls.

➢ Rank list in descending order of coefficient of variation of their execution time 

(i.e., fluctuation of their duration).



TBML Adaptive Tracing Method – Tracing Profile Learning Phase

11

❑ Select a reasonable cutoff number for the list. Example: top 500 method 

calls (~5 % of the methods) for Firefox used for PDF reading.



TBML Adaptive Tracing Method – Tracing Profile Learning Phase

12

❑ We must update the tracing profile whenever there is a change is the 

application usage, software usage, system updates, etc.

❑ Feed the methods and system calls list to follow to the change 

detection process.



TBML Adaptive Tracing Method – Change Detection Phase

13



TBML Adaptive Tracing Method – Change Detection Phase

14

❑ Monitor selected methods and system calls continuously unless a 

changed list is supplied from the learning phase.

❑ Extract the methods and system calls’ execution time.

❑ Predict the execution time at time T using autoregressive integrated 

moving average (ARIMA) while feeding it time series data till T-1.



TBML Adaptive Tracing Method – Change Detection Phase

15

❑ ARIMA is an analysis methodology that utilizes time series data along with statistical analysis to predict future 

values based on data trends.

❑ Components of ARIMA:

➢ Autoregression (AR): a paradigm in which a moving variable is pushed back on its previous, or lag, 

values.

➢ Integrated (I): depicts raw data separation in order for the time series towards becoming stabilized.

➢ Moving average (MA): displays the relationship between a sample and the remaining error of a delayed 

moving average model.

❑ Input parameters of ARIMA:

➢ p: the model's quantity of lag observations.

➢ d: the extent to which the raw readings are differed.

➢ q: the moving average window size.



TBML Adaptive Tracing Method – Change Detection Phase

16

❑ Why choose ARIMA?

➢ ARIMA models make the implicit assumption about the future that it will be very similar to the past trends. 

As a result, in particular market situations, such as economic crises or periods of fast technology 

development, they may prove to be wrong.

➢ It is this drawback property of ARIMA that we are interested in.

➢ A mismatch between actual reading and ARIMA’s predicted reading would mean previous trend has 

been broken.

➢ If the mismatch is beyond a threshold, then we could flag that method/syscall as problematic.



TBML Adaptive Tracing Method – Change Detection Phase

17

❑ Should we change our tracing configuration whenever there is a 
mismatch with ARIMA’s prediction?

➢ No! What if it was just one anomaly which is to never happen 
again? It’s not worth it to keep changing tracing configuration 
every time for such occurrences which doesn’t result in any 
noticeable performance issue.

❑ Anomaly Score:

➢ anomaly_score = (β * is_anomaly) + ((1 - β) * anomaly_score)

➢ Higher frequency of anomaly -> rapid increase of anomaly score.

➢ Lower down of anomaly occurrence -> anomaly score drops 
down.

❑ If anomaly score is above threshold → enable related tracing 
instruments, tracepoints, events, etc.

❑ If anomaly score is below threshold → disable related tracing 
instruments, tracepoints, events, etc.



Case-studies 

❑ Three different types of issues in Firefox (as a complex multithreaded application):

➢ Issues with application method calls to graphics driver.

➢ Specific methods in application source code level causing performance problems.

➢ System level components and system calls responsible for performance problems.

18



Case-studies: Issues with method calls to a driver in Firefox

19

❑ Example1: Firefox Vsync issue with larger PDFs.

❑ Issue: problem between Firefox and the way it calls graphic driver 

functions.



Case-studies: Issues with method calls to a driver in Firefox

20

❑ After the learning phase, only ~500 methods (5%) were selected to be followed out of ~10,000 method calls.

❑ Multi-level TAT method flagged Vsync related method calls within its sorted top 20 method calls list.



21

❑ How the change detection phase adjusts tracepoints:

Case-studies: Issues with method calls to a driver in Firefox

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

E
xe

cu
ti

o
n

 t
im

e
 i
n

 1
0
m

s

Snapshots

Culprint method: mozilla::VsyncRefreshDriverTimer::TickRefreshDriver

Disable Tracepoint Enable Tracepoint



Case-studies: Specific method call in Firefox causing performance problems

22

❑ Firefox 3d transformation rendering issue:



Case-studies: Specific method call in Firefox causing performance problems

23

❑ The problematic method call was found in the top 10 by following the ranked list of 1000 (5%) method calls. Actual 

number of unique callee and caller pair methods exceeded over 20,000.



Case-studies: Network connectivity issue causing high loading time with Firefox

24

❑ No network connectivity and DNS issue:



Case-studies: Network connectivity issue causing high loading time with Firefox

25

❑ Sendmsg system call was flagged.

❑ Linux system call table shows its related to net/socket.c which is the network component of Linux kernel.



Evaluation

26

1. Effectiveness:

❑ Informativeness: Can we collect relevant information of the issues(s) whenever they are needed without tracing the whole 
application?

✓ Three Firefox issues showed that the proposed method is effective

❑ On-time: How early we detect the change and start collecting the data about the issue?

✓ By adjusting the β value of the anomaly score function and the anomaly threshold, depending on the seriousness of the 
application or system, we could adjust how early and how fast we would want to start collecting data about an issue.

2. Overhead: What is the computational overhead of this method?

❑ Learning phase of tracing-profile

❑ It is done offline 

❑ Depends on how many times you would want to run your application to learn.

❑ Under different runtime issues

❑ Runtime Analysis

❑ Collecting the trace of the selected functions 

❑ User space tracing with LTTng or

❑ Profiling 

❑ Change detection based on Arima

❑ Based on each function-tracing



Conclusion

27

❑ Adaptive tracing is a challenging task.

❑ We proposed a trend based adaptive tracing method.

❑ Our method can handle multi-level adaptive tracing (application and system level).

❑ Our method successfully tracked performance issues in the following categories:

✓ Issues with driver and application communication.

✓ Specific methods in application source code level causing performance problems.

✓ System level components and system calls responsible for performance problems.



Thank you!

ak19qp@brocku.ca

https://github.com/ak19qp/dorsal-conference/ 28

mailto:ak19qp@brocku.ca

