

Updates on HPC development

Arnaud Fiorini

Polytechnique Montréal Laboratoire DORSAL

Introduction

- High Performance Computing (HPC) has specific constraints:
 - Dedicated hardware
 - Intense workloads
 - Scalability

- These constraints ask for a dedicated set of tools to:
 - Debug
 - Instrument
 - Analyze
 - •

Introduction

- High Performance Computing (HPC) has specific constraints:
 - Dedicated hardware
 - Intense workloads
 - Scalability

- These constraints ask for a dedicated set of tools to:
 - Debug
 - Instrument
 - Analyze
 - ...

Agenda

- Development environment
 - ROCgdb
 - Theia and Trace Compass
- Performance analysis
 - MPI and GPU tracing
 - New Performance counters
 - Software counters

Development environment – ROCgdb

- GDB adapted to GPUs
- End goal to provide same features as on CPU
- One major constraint is the number of Threads

Development environment – ROCgdb

- GDB adapted to GPUs
- End goal to provide same features as on CPU
- One major constraint is the number of Threads

Development environment – ROCgdb

- GDB adapted to GPUs
- End goal to provide same features as on CPU
- One major constraint is the number of Threads

• Theia is a framework to build IDEs

- It is possible to build your own IDE to fit your constraints
- ROCgdb, Trace Compass and other tools integrate well with Theia

- Theia is a framework to build IDEs
- It is possible to build your own IDE to fit your constraints
- ROCgdb, Trace Compass and other tools integrate well with Theia

- Theia is a framework to build IDEs
- It is possible to build your own IDE to fit your constraints
- ROCgdb, Trace Compass and other tools integrate well with Theia

Demo

Updates on HPC development – Arnaud Fiorini

Performance analysis - MPI and GPU tracing

- The latest features of the ROCm plugin are available
- Score-p traces (MPI) can be converted to CTF
- GPU transfers with MPI are supported

Performance analysis - MPI and GPU tracing

- The latest features of the ROCm plugin are available
- Score-p traces (MPI) can be converted to CTF
- GPU transfers with MPI are supported

Performance analysis - MPI and GPU tracing

- The latest features of the ROCm plugin are available
- Score-p traces (MPI) can be converted to CTF
- GPU transfers with MPI are supported

Performance analysis - New Performance counters

• AMD has made public new performance counters

- These counters allow for more in-depth analysis of GPU kernels
- Sébastien's work even provides more granularity

Updates on HPC development - Arnaud Fiorini

Performance analysis - New Performance counters

- AMD has made public new performance counters
- These counters allow for more in-depth analysis of GPU kernels
- Sébastien's work even provides more granularity

Performance analysis – New Performance counters

- AMD has made public new performance counters
- These counters allow for more in-depth analysis of GPU kernels
- Sébastien's work even provides more granularity

References

- https://github.com/eclipse-cdt-cloud/theia-trace-extension
- https://www.vi-hps.org/projects/score-p/
- https://perftools.pages.jsc.fz-juelich.de/cicd/otf2/tags/otf2-3.0.2/ChangeLog.txt
- https://github.com/ROCm-Developer-Tools/rocprofiler
- https://github.com/ROCm-Developer-Tools/rocgdb
- https://docs.amd.com/